1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentina_108 [34]
3 years ago
14

A hula hoop is rolling along the ground with a translational speed of 26 ft/s. It rolls up a hill that is 16 ft high. Determine

whether the hoop makes it to the top\of the hill. If the hoop makes it to the top, what is its translational speed at the top? If the hoop does not make it to the top, how far vertically up does it rise before stopping? (Hint: A hula hoop is a uniform ring. Apply energy conservation for a rolling object.)
Physics
1 answer:
nikklg [1K]3 years ago
7 0

Answer:12.8 ft/s

Explanation:

Given

Speed of hoop v=26\ ft/s

height of top h=16\ ft

Initial energy at bottom is

E_b=\frac{1}{2}mv^2+\frac{1}{2}I\omega ^2

Where m=mass of hoop

I=moment of inertia of hoop

\omega=angular velocity

for pure rolling v=\omega R

I=mR^2

E_b=\frac{1}{2}mv^2+\frac{1}{2}mR^2\times (\frac{v}{R})^2

E_b=mv^2=m(26)^2=676m

Energy required to reach at top

E_T=mgh=m\times 32.2\times 16

E_T=512.2m

Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

\Delta E=676m-512.2m=163.8m

Therefore

163.8 m=mv^2

v=\sqrt{163.8}

v=12.798\approx 12.8\ ft/s

You might be interested in
The circumference of a circle is 12π meters. find the​ circle diameter.
Veseljchak [2.6K]
The circumference of a circle is 2*pi*r=C so plugging in numbers we have
12pi= 2*pi*r so solving for r gives 12pi/2pi=r which gives 6=r so the radius of the circle is 6 meters since diameter is just 2*r this gives 2*r =12 meters so
Diameter = 12meters
7 0
3 years ago
A piece of paper looks white in both the noonday sun and under moonlight, even though there is less light being reflected off th
ddd [48]
Answer: Brightness consistency

There are three types of perceptual consistency
Types of Perceptual Constancy: Shape, Size, and Brightness Size constancy
Since the moon and sun affect light, brightness consistency is occurring.
Brightness constancy is our visual ability to perceive objects as having the same level of brightness even though the level of lighting changes.
7 0
4 years ago
When the cylinder is displaced slightly along its vertical axis it will oscillate about its equilibrium position with a frequenc
Nesterboy [21]

Answer:

w = √[g /L (½ r²/L2 + 2/3 ) ]

When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE

Explanation:

We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is

          w² = mg d / I

In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow

         d = L / 2

The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated

        I = ¼ m r2 + ⅓ m L2

        I = m (¼ r2 + ⅓ L2)

now let's use the concept of density to calculate the mass of the system

        ρ = m / V

        m = ρ V

the volume of a cylinder is

         V = π r² L

          m =  ρ π r² L

let's substitute

        w² = m g (L / 2) / m (¼ r² + ⅓ L²)

        w² = g L / (½ r² + 2/3 L²)

        L >> r

         w = √[g /L (½ r²/L2 + 2/3 ) ]

When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE

4 0
4 years ago
For a damped simple harmonic oscillator, the block has a mass of 1.2 kg and the spring constant is 9.8 N/m. The damping force is
ArbitrLikvidat [17]

Answer:

a) t=24s

b) number of oscillations= 11

Explanation:

In case of a damped simple harmonic oscillator the equation of motion is

m(d²x/dt²)+b(dx/dt)+kx=0

Therefore on solving the above differential equation we get,

x(t)=A₀e^{\frac{-bt}{2m}}cos(w't+\phi)=A(t)cos(w't+\phi)

where A(t)=A₀e^{\frac{-bt}{2m}}

 A₀ is the amplitude at t=0 and

w' is the angular frequency of damped SHM, which is given by,

w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

Now coming to the problem,

Given: m=1.2 kg

           k=9.8 N/m

           b=210 g/s= 0.21 kg/s

           A₀=13 cm

a) A(t)=A₀/8

⇒A₀e^{\frac{-bt}{2m}} =A₀/8

⇒e^{\frac{bt}{2m}}=8

applying logarithm on both sides

⇒\frac{bt}{2m}=ln(8)

⇒t=\frac{2m*ln(8)}{b}

substituting the values

t=\frac{2*1.2*ln(8)}{0.21}=24s(approx)

b) w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

w'=\sqrt{\frac{9.8}{1.2}-\frac{0.21^{2}}{4*1.2^{2}}}=2.86s^{-1}

T'=\frac{2\pi}{w'}, where T' is time period of damped SHM

⇒T'=\frac{2\pi}{2.86}=2.2s

let n be number of oscillations made

then, nT'=t

⇒n=\frac{24}{2.2}=11(approx)

8 0
4 years ago
If the Earth and distant stars were stationary (motionless) in space, what would we observe about the wavelength from these star
torisob [31]
There's no such thing as "stationary in space".  But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>

</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.

</span>In order to decide what's actually happening, and how that star is moving, 
the trick is:  How do we know the actual wavelengths the star emitted ?


 
7 0
4 years ago
Other questions:
  • (28 points) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of ra
    13·1 answer
  • In which of the following eons did a significant amount of oxygen gas exist in Earth's atmosphere?
    5·1 answer
  • A moving car has kinetic energy. If it speeds up until it is going four times faster than before, how much kinetic energy does i
    13·1 answer
  • How much work is done by a crane that lowers 1000N of material a distance of 150
    11·2 answers
  • At the surface of Mars the acceleration due to gravity is 3.8m/s . A book weighs 34 N at the surface of the earth. What is it’s
    14·1 answer
  • What is the name of the device that measures wind speed?
    14·2 answers
  • Describe, in detail, an experiment in which you could determine the power for a period of several hours. You must be able to tel
    7·2 answers
  • WILL GIVE BRAINLIEST!!!
    12·1 answer
  • Explain why the radiative zone of the sun is hotter than the corona of the sun
    7·1 answer
  • Item 4 A student conducts an experiment to determine how the temperature of water affects the time for sugar to dissolve. In eac
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!