1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
8

A soccer player applies a force of 48.4 N to a soccer ball while kicking it. If the ball has

Physics
2 answers:
Katarina [22]3 years ago
8 0
Yea C is the answer the first answer is right
AlekseyPX3 years ago
6 0

Answer:

C. 110 m/s2

Explanation:

Force = Mass x Acceleration

Since we have the force and the mass, we can rearrange this equation to solve for acceleration by dividing both sides by mass:

Force/Mass = (Mass x Acceleration)/Mass

Acceleration = Force/Mass

Now we just have to plug in our values and calculate!

Acceleration = 48.4/0.44

Acceleration = 110m/s/s

It is option C. 110 m/s2

Hope this helped!

You might be interested in
What does digital media allow you to do?
kifflom [539]
Digital media<span> are any </span>media<span> that are encoded in machine-readable formats. </span>
4 0
3 years ago
Greg throws a 2.8-kg pumpkin horizontally off the top of the school roof in order to hit Mr. H's car. The car has parked a dista
Igoryamba

Answer:

The horizontal velocity is v = 9.2 m/s

Explanation:

From the question we are told that

     The mass of the pumpkin is  m = 2.8 \ kg

      The distance of the the car from the building's base is  d = 13.4 \ m

       The height of the roof is h = 10.4 \ m

       

The height is mathematically represented as

         h = \frac{1}{2} gt^2

Where g is the acceleration due to gravity which has a value of g =9.8 \ m/s^2

substituting values

          10.4= 0.5 * 9.8 * t

making the time taken the subject of the formula

         t = \frac{10.4}{0.5 * 9.8 }

          t = 1.457 \ s

The speed at which the pumpkin move horizontally can be represented mathematically  as

                         v = \frac{d}{t}

substituting values

                     v =\frac{13.4}{1.457}

                     v = 9.2 m/s

7 0
2 years ago
Inside a 30.2 cm internal diameter stainless steel pan on a gas stove water is being boiled at 1 atm pressure. If the water leve
dybincka [34]

Answer:

Q = 20.22 x 10³ W = 20.22 KW

Explanation:

First we need to find the volume of water dropped.

Volume = V = πr²h

where,

r = radius of pan = 30.2 cm/2 = 15.1 cm = 0.151 m

h = height drop = 1.45 cm = 0.0145 m

Therefore,

V = π(0.151 m)²(0.0145 m)

V = 1.038 x 10⁻³ m³

Now, we find the mass of the water that is vaporized.

m = ρV

where,

m = mass = ?

ρ = density of water = 1000 kg/m³

Therefore,

m = (1000 kg/m³)(1.038 x 10⁻³ m³)

m = 1.038 kg

Now, we calculate the heat required to vaporize this amount of water.

q = mH

where,

H = Heat of vaporization of water = 22.6 x 10⁵ J/kg

Therefore,

q = (1.038 kg)(22.6 x 10⁵ J/kg)

q = 23.46 x 10⁵ J

Now, for the rate of heat transfer:

Rate of Heat Transfer = Q = q/t

where,

t = time = (18.6 min)(60 s/1 min) = 1116 s

Therefore,

Q = (23.46 x 10⁵ J)/1116 s

<u>Q = 20.22 x 10³ W = 20.22 KW</u>

8 0
3 years ago
10. Solve the following numerical problems
frosja888 [35]

Answer:

\boxed {\boxed {\sf 120 \ Joules}}

Explanation:

Work is equal to the product of force and distance.

W=F*d

The force is 8 Newtons and the distance is 15 meters.

F= 8 \ N \\d= 15 \ m

Substitute the values into the formula.

W= 8 \ N * 15 \ m

Multiply.

W= 120 \ N*m

  • 1 Newton meter is equal to 1 Joule
  • Our answer of 120 N*m equals 120 J

W= 120 \ J

The work done is <u>120 Joules</u>

3 0
3 years ago
A 8.8 cm diameter circular loop of wire is in a 1.04 T magnetic field. The loop is removed from the field in 0.30 s . Assume tha
denis23 [38]

Answer:

0.021 V

Explanation:

The average induced emf (E) can be calculated usgin the Faraday's Law:

E = - \frac{N*\Delta \phi}{\Delta t}  

<u>Where:</u>

<em>N = is the number of turns = 1   </em>

<em>ΔΦ = ΔB*A                                            </em>

<em>Δt = is the time = 0.3 s   </em>

<em>A = is the loop of wire area = πr² = πd²/4 </em>

<em>ΔB: is the magnetic field = (0 - 1.04) T                     </em>

Hence the average induced emf is:

E = - \frac{\Delta B*A}{\Delta t} = - \frac{(0- 1.04 T) \pi (0.088 m)^{2}}{4*0.3 s} = 0.021 V                      

Therefore, the average induced emf is 0.021 V.

I hope it helps you!

8 0
3 years ago
Other questions:
  • Explain how the gas laws apply to the act of breathing. Describe the changes that occur in each step of the process in terms of
    11·1 answer
  • Heat likes to remain <br> ONMFRIU ← Whats that unscrambled?
    7·1 answer
  • Two red blood cells each have a mass of 9.0 × 10 − 14 kg and carry a negative charge spread uniformly over their surfaces. The r
    9·1 answer
  • In a compound chemical energy is contained in the what ?
    9·2 answers
  • A constant force of 120 N pushes a 55 kg wagon across an 8 m level surface. If the wagon was initially at rest, what is the fina
    14·1 answer
  • How much force does it take to accelerate a 50.8 kg person at 3.50 m/s^2?
    13·1 answer
  • How can magnetic properties of a magnet be destroyed​
    6·1 answer
  • Describe the motion of an object as it accelerates. IN YOUR OWN WORD!! ASAP
    13·1 answer
  • 4 pleasee i have to submit in 10 minutes
    7·1 answer
  • Compare and Contrast the two main branches of physical science. How are they the same? How are they different?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!