The aggregate demand curve will also decrease. If supply is not high and there is no circulating income or monetary value that's happening in a particular market, then the demand of consumers will also go down. This is because the need for production is no longer necessary because there will be no consumers to purchase goods and services from the market.
To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,
The circumference of the planet is,

Under the mathematical value the radius would be



Using second equation of motion

Replacing the values given,

Rearranging and solving for 'a' we have,

Using the value of acceleration due to gravity from Newton's law we have that

Here,
r = Radius of the planet
G = Gravitational Universal constant
M = Mass of the Planet


Therefore the mass of this planet is 
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V
Answer:
42.417 cm³
Explanation:
The formula to find the volume of a cone is :
V =
× π r² h
Here,
r ⇒ radius ⇒ 3 cm
h ⇒ height ⇒ 4.5 cm
<u>Let us find it now.</u>
V =
× π r² h
V =
× π × 3 × 3 × 4.5
V =
× π × 9 × 4.5
V =
× π × 9 × 4.5
V =
× π × 40.5
V =
× 3.142 × 40.5
V =
× 127.251
V = <u>42.417 cm³</u>
Sum the forces in the y (upward) direction




Applying the kinematic equations of linear motion we have that the displacement as a function of the initial speed, acceleration and time is



Again through the kinematic equation of linear motion that describes velocity as the change of displacement in a given time, we have to



Therefore the horizontal distance between the target and the rocket should be 38.83m