Recall that average velocity is equal to change in position over a given time interval,

so that the <em>x</em>-component of
is

and its <em>y</em>-component is

Solve for
and
, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.


Note that I'm reading the given details as

so if any of these are incorrect, you should make the appropriate adjustments to the work above.
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
Intensity of sunlight at given position is defined as power received per unit area
so here we can say

area on which photons are received is given as

now we can find the power received due to sunlight



now we can say this power is due to photons that strikes on surface of earth
so here we can say

given here that





so it will strike 2.47 * 10^18 photons on given area per second
Frequency = speed ÷ wavelength
= 330m/s ÷ 2.5m
= 132 Hz