Answer:
0.125 m
Explanation:
Pressure in fluids is given as the product of density, height and acceleration due to gravity and expressed as
P=hdg
Where h is the height, d is density, g is acceleration due to gravity and P is pressure.
Making h the subject of formula then
h=P/dg
Given specific gravity of a substance, its density is equal to specific gravity multiplied by density of water. Taking density of pure water as 1000 kg/m³ then the density of reference fluid will be 1.05*1000=1050 kg/m³
Substituting pressure with 1.29*10³ pa as given then taking g as 9.81 m/s² then
H=1.29*10³÷(9.81*1050)=0.1252366389981068880151448958788408329692m
Rounded off, the height is approximately 0.125 m
So, the frequency of that light approximately 
<h3>Introduction</h3>
Hi ! Here I will help you to discuss the relationship between frequency and wavelength, with the velocity constant of electromagnetic waves in a vacuum. We all know that regardless of the type of electromagnetic wave, it will have the same velocity as the speed of light (light is part of electromagnetic wave too), which is 300,000 km/s or
m/s. As a result of this constant property, <u>the shorter the wavelength, the greater the value of the electromagnetic wave frequency</u>. This relationship can also be expressed in this equation:

With the following condition :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength (m)- f = electromagnetic wave frequency (Hz)
<h3>Problem Solving</h3>
We know that :
- c = the constant of the speed of light in a vacuum ≈
m/s
= wavelength =
m.
What was asked :
- f = electromagnetic wave frequency = ... Hz
Step by step :






<h3>Conclusion :</h3>
So, the frequency of that light approximately 
<h3>See More :</h3>
The answer is b) false. Stars are mainly classified by their spectra (the elements they absorb) and their temperature.
Answer:
The total momentum after the collision is 1 kg-m/s.
Explanation:
We have,
Mass of a steel sphere is 0.5 kg
It is travelling with a speed of 2 m/s
It collides with an identical sphere at rest.
The law of conservation of momentum states that the initial momentum is equal to the final momentum for an isolated system. Here, initial momentum is :

So, the total momentum after the collision is 1 kg-m/s.
Answer:
141.42 km/h
Explanation:
Since this is a 100km/h right angle crosswind, the speed vector with respect to the ground is the vector speed of the airplane with respect to air + the vector speed of the cross-wind with respect to the ground
<100,0> + <0,100> = <100,100>
This vector has a magnitude of
km/h