The mechanical energy isn't conserved. Some energy is lost to friction.
Option A.
<h3><u>Explanation:</u></h3>
The mechanical energy is defined as the energy of a body which it achieves by virtue of its position and velocity. The mechanical energy are of two types - potential energy and kinetic energy. The potential energy is the energy of the body which it achieves by means of its relative position and is directly proportional to the height of the body from its relative plane. Whereas the kinetic energy of the body is achieved by virtue of its velocity and is directly proportional to the square of velocity of the body.
As the mountaineer is skiing down the slope of a mountain, the potential energy of the person is gradually changing into his kinetic energy. Had it been in an ideal situation, the potential energy lost would have been just equal to the kinetic energy gained by the person. But there's friction which opposes the speed of the body and reduces the velocity. Thus the kinetic energy will be lost to some extent and the energy won't be conserved.
Answer: 5.8 m/s squared
Explanation: just got that question lol
Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
When you're talking about gravity, it's easy to identify the equal
opposite forces.
Gravity ALWAYS produces an equal pair of opposite forces.
They both act between the centers of the two objects, one in
each direction.
Consider the equal pair of opposite gravitational forces between
you and the Earth. One force acts on you, and draws you toward
the center of the Earth. We call that force "your weight".
The other one acts on the Earth, and draws it toward the center
of you. Hardly anybody ever talks about that one, but the two
forces are equal ... your weight on Earth is equal to the Earth's
weight on you !