Answer:
Q must be placed at 0.53 L
Explanation:
Given data:
q_1 = 4.0 μC , q_2 = 3.0μC
Distance between charge is L
third charge q be placed at distance x cm from q1
The force by charge q_1 due to q is

----1
The force by charge q_2 due to q is

--2
we know that net electric force is equal to zero
F_1 = F_2





x = 0.53 L
Q must be placed at 0.53 L
Answer:
<em>The person needs to apply 25 N to balance the seesaw</em>
Explanation:
<u>Moment</u>
The moment of a force is a measure of its tendency to cause a body to rotate about a specific point or axis.
The moment M of a force F located at a distance x from the axis of rotation is calculated as follows:
M = F.x
The image shows a moment of M=100 N.m is needed to be applied to balance the seesaw. It can also be noted that the distance to the pivot is x=4 m
To calculate the force needed to balance the seesaw, we solve for F:


F = 25 N
The person needs to apply 25 N to balance the seesaw
The final temperature is 83 K.
<u>Explanation</u>:
For an adiabatic process,


Given:-



(the gas is monoatomic)

T = 275
0.30
T = 83 K.
Answer:
Explanation:
Given
Height of ceiling is 
Initial speed of Putty 
Speed of Putty just before it strike the ceiling is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement



time taken by putty to reach the ceiling




Answer:
-611.32 N/C
0.43723 m
Explanation:
k = Coulomb constant = 
q = Charge = -4.25 nC
r = Distance from particle = 0.25 m
Electric field is given by

The magnitude is 611.32 N/C
The electric field will point straight down as the sign is negative towards the particle.

The distance from the electric field is 1.71436 m