1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.
<span>speed = wavelength x frequency
speed = 0.4m X 10 Hz
speed = 4 m/s</span>
Initial speed of the car (u) = 15 m/s
Final speed of the car (v) = 0 m/s (Car comes to a complete stop after driver applies the brake)
Distance travelled by the car before it comes to halt (s) = 63 m
By using equation of motion, we get:

Acceleration of the car (a) = -1.78 m/s²
Magnitude of the car's acceleration (|a|) = 1.78 m/s²
Explanation:
Given that,
A person walks 9.0 km directly east and then turns left and heads directly north for 12.0 km.
We need to find his displacement from the starting position.
We know that,
Displacement = shortest path covered

For direction,

Hence, this is the required solution.
Answer:

Now when it will reach at point B then its normal force is just equal to ZERO


Explanation:
Since we need to cross both the loops so least speed at the bottom must be

also by energy conservation this is gained by initial potential energy


so we will have

now we have

here we have
R = 7.5 m
so we have


Now when it will reach at point B then its normal force is just equal to ZERO

now when it reach point C then the speed will be
![mgh - mg(2R_c) = \frac{1}{2]mv_c^2](https://tex.z-dn.net/?f=mgh%20-%20mg%282R_c%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Dmv_c%5E2)


now normal force at point C is given as


