1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
2 years ago
6

In Ancient Greece, athletes competing in the long jump used handheld weights called halteres to lengthen their jumps. You are a

78 kg history major on the track and field team and decide to try this strategy. You jump at 10.3 m/s, 22.8 degrees above the horizontal. At the peak of your jump you throw two 5.5 kg masses horizontally behind you such that their velocity is zero in the ground's reference frame. What distance do the halteres add to the jump in m
Physics
1 answer:
katovenus [111]2 years ago
3 0

The halter add the distance to the jump in meters is 0.55 m.

<h3>What is projectile?</h3>

When an object is thrown at an angle from the horizontal direction, the object is said to be in projectile motion. The object which follows the projectile motion is called the projectile.

The magnitude of velocity u =10.3 m/s, angle of jumping θ = 22.8 degrees.

Components of velocity in x and y direction are

Vx = 10.3 cos 22.8 = 9.5 m/s

Vy = 10.3 sin 22.8 = 4 m/s

Maximum Range of athlete achieved using halter is given by

R = u²sin2θ /g

where, u = initial velocity, θ is the angle of projection and g is the gravitational acceleration.

Substituting the values, we get

R = (10.3)² sin(2 x 22.8 °) / 2 x 9.81

R = 7.75m

At the peak of jump you throw two 5.5 kg masses horizontally behind you such that their velocity is zero in the ground's reference frame.

The momentum is conserved in this situation,

(M+2m)Vxo =MVx'

Vx' = (M+2m)/M x Vxo'

Change in x component of velocity ΔVx = Vx' -Vxo

Vxo = 2m/M x Vx

Vxo = 2 x 5.5 /78 x 9.5

Vxo = 1.34 s

Maximum height gained when final velocity is zero

Vy = 0 = Vyo -gt

time t = Vyo/g = 4/9.8 = 0.41s'

Increase in range by using of halters is

ΔR = ΔVx' x t

ΔR = 1.34 x 0.41

ΔR =0.55m

Thus, the halter add the distance to the jump in meters is 0.55 m.

Learn more about projectile.

brainly.com/question/11422992

#SPJ1

You might be interested in
Which force is opposite gravity?
aev [14]

The answer you are looking for is A

5 0
3 years ago
Read 2 more answers
How dose silicon shape our technological reality?
vichka [17]
Silicon is used in the manufacturing of microchips and is also used in motherboards. We use it in our daily lives. It is a high tech element. 
3 0
3 years ago
A 5.0-kg centrifuge takes 95 s to spin up from rest to its final angular speed with constant angular acceleration. A point locat
stellarik [79]

Answer:

(a) 17.37 rad/s^2

(b) 12479

Explanation:

t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0

w = v / r = 99 / 0.06 = 1650 rad/s

(a) Use first equation of motion for rotational motion

w = w0 + α t

1650 = 0 + α x 95

α = 17.37 rad/s^2

(b) Let θ be the angular displacement

Use third equation of motion for rotational motion

w^2 = w0^2 + 2 α θ

1650^2 = 0 + 2 x 17.37 x θ

θ = 78367.87 rad

number of revolutions, n = θ / 2 π

n = 78367.87 / ( 2 x 3.14)

n = 12478.9 ≈ 12479

4 0
3 years ago
Find the magnitude of the electric field due to a charged ring of radius "a" and total charge "Q", at a point on the ring axis a
34kurt

Answer:

E=\frac{KQ}{2\sqrt 2a^2}

Explanation:

We are given that

Charge on ring= Q

Radius of ring=a

We have to find the magnitude of electric filed on the axis at distance a from the ring's center.

We know that the electric field at distance x from the center of ring of radius R is given by

E=\frac{kQx}{(R^2+x^2)^{\frac{3}{2}}}

Substitute x=a and R=a

Then, we get

E=\frac{KQa}{(a^2+a^2)^{\frac{3}{2}}}

E=\frac{KQa}{(2a^2)^{\frac{3}{2}}}

E=\frac{KQa}{2\sqrt 2a^3}

E=\frac{KQ}{2\sqrt 2a^2}

Where K=9\times 10^9 Nm^2/C^2

Hence, the magnitude of the electric filed due to charged ring on the axis of ring at distance a from the ring's center=\frac{KQ}{2\sqrt 2a^2}

4 0
3 years ago
Why did Kenyatta want to distance himself from the Mau Mau? Check all that apply.
Savatey [412]

Answer:

B and C!

Explanation:

I just did it on edge. I hope this helps!

3 0
3 years ago
Other questions:
  • A 75-hp compressor in a facility that operates at full load for 2500 h a year is powered by an electric motor that has an effici
    7·1 answer
  • What drives the movement of water through earths systems.
    6·1 answer
  • During destructive interference, two waves moving through the same medium will
    8·2 answers
  • Figure 3 shows a stationary metal block hanging from the middle of a stretched wire which is suspended from a horizontal beam. T
    13·1 answer
  • What type of telescope is this? <br> See attachment.
    10·1 answer
  • !
    14·2 answers
  • In a women's 100-m race, accelerating uniformly, Laura takes 1.82 s and Healan 3.07 s to attain
    9·1 answer
  • Why are slow-twitch muscles more beneficial than fast-twitch muscles for cardiorespiratory fitness?
    14·2 answers
  • How does the loneliest whale relate to physics/waves.
    8·1 answer
  • More potential energy can be stored by moving against the magnetic force closer to a magnet?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!