Answer:
yes
Explanation:
using law of HC(heat capacity), which is
- heat loss=heat gain
- energy H=MCQ
Where M is mass of substance,C is specific heat capacity, and Q is temperature change
In case of two substance
- the H = Mc*Cc*Q+Mw*Cw*Q(provided the initial and final temperature are given)
λ = 3.125 m
λ = 2.83 m
<h3>Further explanation</h3>
Given
Frequency of radio : 96 MHz and 106 MHz
Required
The wavelength
Solution
Wavelength : from the crest to the crest of the next wave or the trough to the trough
Frequency (f): number of waves in one second
v = λ x f
λ = v : f
Input the value :
f = 96 MHz = 96 x 10⁶ Hz
λ = v : f
λ = 3 x 10⁸ : 96 x 10⁶
λ = 3.125 m
f = 106 MHz = 106 x 10⁶ Hz
λ = v : f
λ = 3 x 10⁸ : 106 x 10⁶
λ = 2.83 m
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
Answer:
Explanation:
If a baseball is hit into the air with a velocity of 27 m/s, we want to determine the maximum height of the ball. Using the projecile formula;
Max height H = u²/2g
u is the initial velocity of the body = 27m/s
g is the acceleration due to gravity = 9.81m/s²
H = 27²/2(9.81)
H = 729/19.62
H = 37.16m
Hence the ball went 37.16m high
The frequency of bird chirping hear by hiran will be 1.77 kHz.
<u>Explanation:</u>
As per Doppler effect, the observer will feel a decrease in the frequency of the receiving signal if the source is moving away from the observer. So the shifted frequency is obtained using the below equation:

Here , c is the speed of sound, Vs is the velocity of source with which it is moving away. f is the original frequency of source and f' is the frequency shift heard by the observer.
As here, f = 1800 Hz, Vs= 6 m/s and c = 343 m/s, then

So, the frequency of bird chirping hear by hiran will be 1.77 kHz.