Answer:

Explanation:
The expression which represent the first diffraction minima by a circular aperture is given by
--------eqn 1
The angle through which the first minima is diffracted is given by
---------eqn 2
As
is very small so we can write 
So from eqn 1 and eqn 2 we can write
--------eqn 3
Here
is the position of first maxima D is the distance of screen from the circular aperture d is the diameter of aperture
It is given that diameter of circular aperture is 14.7 cm so 
Now putting all these value in eqn 3


Using the formula t=root of 2h/g then where h=28 and g=9.8 then substitute so the answer is 2.4seconds
Answer:
The convex lens is shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the opposite side of the lens.
Explanation:
Answer:
Explanation:
A light year is a unit of length and is defined as "the distance a photon would travel in vacuum during a Julian year at the speed of light at an infinite distance from any gravitational field or magnetic field. "
In other words: It is the distance that the light travels in a year.
This unit is equivalent to
, which mathematically is expressed as:

Doing the conversion:
This is the distance from Earth to Sirius in miles.
Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.