Answer:
E = (-3.61^i+1.02^j) N/C
magnitude E = 3.75N/C
Explanation:
In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:
(1)
Where the minus sign means that the electric field point to the charge.
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q = -4.28 pC = -4.28*10^-12C
r: distance to the charge from the point P
The point P is at the point (0,9.83mm)
θ: angle between the electric field vector and the x-axis
The angle is calculated as follow:

The distance r is:

You replace the values of all parameters in the equation (1):
![\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5Cfrac%7B4.28%2A10%5E%7B-12%7DC%7D%7B%2810.21%2A10%5E%7B-3%7Dm%29%7D%5B-cos%2815.84%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2815.84%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7BE%7D%3D%28-3.61%5Chat%7Bi%7D%2B1.02%5Chat%7Bj%7D%29%5Cfrac%7BN%7D%7BC%7D%5C%5C%5C%5C%7C%5Cvec%7BE%7D%7C%3D%5Csqrt%7B%283.61%29%5E2%2B%281.02%29%5E2%7D%5Cfrac%7BN%7D%7BC%7D%3D3.75%5Cfrac%7BN%7D%7BC%7D)
The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C
Answer:
Explanation:
To solve this, we start by using one of the equations of motion. The very first one, in fact
1
V = U + at.
V = 0 + 0.8 * 3.4 = 2.72 m/s.
2.
V = 0 + 0.8 * 4.3 = 3.44 m/s.
3.
d = ½ * 0.8 * 4.3² + 3.44 * 12.9
d = 7.396 + 44.376
d = 51.77 m.
4.
d = 62 - 51.77 = 10.23 m. = Distance
traveled during deceleration.
a = (V² - Vo²) / 2d.
a = (0² - 3.44²) / 20.46
a = -11.8336 / 20.46 = -0.58 m/s²
5.
t = (V - Vo)/a =(0 - 3.44) / -0.58
t = -3.44/-.58 = 5.93 s
= Stop time.
T = 4.3 + 12.9 + 5.93 = 23.13 s. = Total
time the hare was moving.
6.
d = Vo * t + ½ * a * t² = 62 m.
0 + 0.5 * (23.13)² * a = 61
267.5a = 61
a = 61/267.5
a = 0.23 m/s²
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
According to my examination I have confirmed that I do NOT repeat do NOT know this .