It is a theory on a show that people try to solve.
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
R=3818Km
Explanation:
Take a look at the picture. Point A is when you start the stopwatch. Then you stand, the planet rotates an angle α and you are standing at point B.
Since you travel 2π radians in 24H, the angle can be calculated as:
t being expressed in hours.

From the triangle formed by A,B and the center of the planet, we know that:
Solving for r, we get:

Complete Question
The complete question is shown on the first uploaded image
Answer:
The value of
and
Explanation:
Considering the diagram,
Taking moment about the pivot , we have

=> 
Generally given that the bar is at equilibrium then the upward forces is equal to the down ward force
So

=> 
=>