Explanation:
Each element in the periodic table has different but fixed number of the protons in nucleus of it's atom, which is known as the atomic number.
Transmutation of one chemical element into the another involves the changing of the atomic number. Such nuclear reaction requires millions of the times more energy as compared to normal chemical reactions. Thus, the dream of the alchemist of transmuting the lead into the gold was never achievable chemically .
Conversion of lead to gold in today's world:
This conversion is indeed possible. The requirements are a particle accelerator, tremendous supply of the energy. Nuclear scientists at the Lawrence Berkeley National Laboratory located in California, more than 30 years ago, succeeded in producing very minute amounts of the gold from the bismuth. Bismuth is a metallic element which is adjacent to the lead on periodic table. Same process would work for the lead but isolating gold at end of reaction would prove much more difficult because lead is available in many isotopes. The homogeneous nature of the element means that it is easier to separate the gold from the bismuth as compared to separate the gold from the lead which has four isotopic identities which all are stable.
Answer:
3.75 g.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em />
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of calcium nitrite = ??? g,
mass of the solution = 25.0 g.
∴ mass % = (mass of solute/mass of solution) x 100
<em></em>
<em>∴ mass of solute (calcium nitrite) = (mass %)(mass of solution)/100</em> = (15.0 %)(25.0 g)/100 = <em>3.75 g.</em>
Lets let our mass equal 3 on alletals and solve using d=m/v equation
Aluminum
V=3/2.70=1.11
Silver
V=3/10.5=.286
Rhenium
V=3/20.8=.144
Nickel
V=3/8.90=.337
This gives us the following list from largest to smallest Aluminum, Nickel, Silver, and Rhenium
Answer:
Volume = 746 L
Explanation:
Given that:- Mass of copper(II) fluoride = 175 g
Molar mass of copper(II) fluoride = 101.543 g/mol
The formula for the calculation of moles is shown below:
Thus,
Also,
Considering:
So,,
Given, Molarity = 0.00231 M
So,
<u>Volume = 746 L</u>
Answer:
Explanation:
mole of HCl remaining after reaction with CaCO₃
= .3 M of NaOH of 32.47 mL
= .3 x .03247 moles
= .009741 moles
Initial HCl taken = .3 x .005 moles = .0015 moles
Moles of HCl reacted with CaCO₃
= .009741 - .0015 = .008241 moles
CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O .
1 mole 2 moles
2 moles of HCl reacts with 1 mole of CaCO₃
.008241 moles of HCl reacts with .5 x .008241 moles of CaCO₃
CaCO₃ reacted with HCl = .5 x .008241 = .00412 moles
the mass (in grams) of calcium carbonate in the tablet
= .00412 x 100 = .412 grams . ( molar mass of calcium carbonate = 100 )