We have that the the liquid is
- C_2H_5OH (ethanol
- And at a condition of H_2SO4 as catalyst and temp 170
From the question we are told
- A student wished to prepare <em>ethylene </em>gas by <em>dehydration </em>of ethanol at 140oC using sulfuric acid as the <em>dehydrating </em>agent.
- A low-boiling liquid was obtained instead of ethylene.
- What was the liquid, and how might the reaction conditions be changed to give ethylene
<h3>
Ethylene formation</h3>
Generally the equation is
2C_2H_5OH------CH3CH_2O-CH_2CH_3+H_20
Therefore
with ethanol at 140oC
The product is diethyl ethen
The reaction at 170 ethylene will give
C_2H_5OH-------CH_2=CH_2+H_2O( at a condition of H_2SO4 as catalyst and temp 170)
Therefore
The the liquid is
For more information on Ethylene visit
brainly.com/question/20117360
Answer:
no
Explanation:
the output can never be greater than the input
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.