Answer:
<h3>The answer is 10 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 300 g
volume = final volume of water - initial volume of water
volume = 40 - 10 = 30 mL
We have

We have the final answer as
<h3>10 g/mL</h3>
Hope this helps you
Answer:
I think the answer is D a ray of violet light
Hope it helps!
Answer : The mass of the water in two significant figures is, 
Explanation :
In this case the heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron metal = 
= specific heat of water = 
= mass of iron metal = 32.3 g
= mass of water = ?
= final temperature of mixture = 
= initial temperature of iron metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the mass of the water in two significant figures is, 
Answer:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity Having gained this energy during its acceleration the body maintains this kinetic energy unless its speed changes
Example:
A semi-truck travelling down the road
A river flowing at a certain speed
Answer:
it's because your to fine