Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other

This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion

From Newton's second law

Squarring both sides

The height from which the student fell is 5.7141 m
The time taken by the light reflected from sun to reach on earth will be 8.4 minutes.
To find the answer, we need to know about the distance travelled by light.
<h3>How to find the time taken by the light reflected from sun to reach on earth?</h3>
- So, in order to solve this problem, we must first know how far the moon is from Earth and how far the Sun is from the moon.
- These distances are given as 3.8×10^5 km (Earth-Moon) and 1.5×10^8 km (Sun- Earth).
- Since the Moon and Sun are on opposite sides of Earth during a full moon, the light's distance traveled equals,

- As we know that light travels at a speed of 300,000 km per second. then, the time taken by the light reflected from sun to reach on earth will be,

Thus, the time it takes for the light from the Sun to reach Earth and be recognized as 8.4 minutes.
Learn more about distance here:
brainly.com/question/11495758
#SPJ4
Answer:
a) 0.022%
b) 10014.32 lb
Explanation:
a) Percentage uncertainty would be

Percent uncertainty is 0.022%
b) For 1 kg uncertainty mass in kg would be

Mass in pounds would be

Mass in pound-mass is 10014.32 lb
Answer:
1. D. They can be a substance, material, object or source of energy.
2. B. The properties will be different.
3. C. When two reactants form one product, the reaction is spontaneous.
True it was a perfect running technique