As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf. ... Like low-mass stars, high-mass stars are born in nebulae and evolve and live in the Main Sequence
hydrogen shell burning - outer layers swell. Red Giant Branch - helium ash core compresses - increased hydrogen shell burning. First Dredge Up - expanding atmosphere cools star - stirs carbon, nitrogen and oxygen upward - star heats up.
Answer:
I think it is true I'm not saying it is but if you get another person who says its true say true
Explanation:
Answer:
The normal line divides the angle between the incident ray and the reflected ray into two equal angles. The angle between the incident ray and the normal is known as the angle of incidence. The angle between the reflected ray and the normal is known as the angle of reflection.
Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
A fuse is an electrical safety device which should not blow, which should overheat and melts if current is too high. Its placed in the live wire before the switch. This prevents overheating and catching fire. A fuse have a specific current value for example - 3000 amps. So when choosing a suitable fuse you must use the above minimum value but less than maximum value. For example in a circuit there is 1000W flowing, you should choose more than 1000 amps fuse not less or else, it will melt.