If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !
Answer:
The influence of diameter of the blood vessel on peripheral resistance is significant because resistance is inversely proportional to the fourth power of the diameter.
Explanation:
The influence of diameter of the blood vessel on peripheral resistance is significant because the relation between the peripheral resistance and the diameter is given as, resistance is inversely proportional to the fourth power of the diameter. Thus, with small increase or decrease in the value of diameter, the peripheral resistance may vary by a significant amount.
Your experiment should keep one thing constant and measure the other. So vary the temp and measure the pressure. You will get a set of data that relates pressure with temp.
<span>PV = nRT
So
P and T are directly proportional.
</span>These experiments are one of either Boyle-Mariottte's, Gay-Lussac'a or Charles' law.
The answer is allotropes. Hope this helps. Have a great day.
Answer:
Parallel circuit
Explanation:
A parallel circuit is a closed circuit in which current flows and divide in two or more paths and recombining to complete the circuit, each load (light bulb) receives the fully voltage of the batteries in the circuit.