Answer:
answer 2 because the baseball has less mass then the 1st one
Assuming Adam is on earth g= 9.8 m/s and m= weight/ gravity = 667/9.8 = 68 kg
D I think .... don’t be mad if I’m wrong
Answer:
18.1347 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² = a
Total height the ball falls is 2.4619+14.3 = 16.7619 m
The speed at which the stone reaches the ground is 18.1347 m/s
Answer:
We can retain the original diffraction pattern if we change the slit width to d) 2d.
Explanation:
The diffraction pattern of a single slit has a bright central maximum and dimmer maxima on either side. We will retain the original diffraction pattern on a screen if the relative spacing of the minimum or maximum of intensity remains the same when changing the wavelength and the slit width simultaneously.
Using the following parameters: <em>y</em> for the distance from the center of the bright maximum to a place of minimum intensity, <em>m</em> for the order of the minimum, <em>λ </em>for the wavelength, <em>D </em>for the distance from the slit to the screen where we see the pattern and <em>d </em>for the slit width. The distance from the center to a minimum of intensity can be calculated with:
From the above expression we see that if we replace the blue light of wavelength λ by red light of wavelength 2λ in order to retain the original diffraction pattern we need to change the slit width to 2d:
<em> </em>