Partial Lunar Eclipse:
A partial lunar eclipse is when the earth gets between the Sun and Moon. However, all three bodies are not in alignment meaning we are able to see some more like part of the moon's surface as it moves in route of the Earth's shadow.
Total Lunar Eclipse:
The three celestial bodies are perfectly aligned which allows for the earth to completely block the sun's rays from hitting/reaching the moon. The sun is positions is in back of the Earth which then causes the shadow of the earth to be cast on the Moon covering the moon completely. When that happens you get the phenomenon called a total lunar eclipse.
Hopefully this helped and good luck.
Answer:
height of the opening actually measure is 4'-9"
Explanation:
given data
window size = 3'-3" x 4'-9"
solution
height of the opening should actually measure will be 4'-9" in 3'-3" x 4'-9"
because according to architectural plan height can not be more than the opening size of window
and we can't take smaller height also
so fit in opening window we should take same height of height of opening window and that is here 4'-9"
so here height of the opening actually measure is 4'-9"
The answer is D I took the test
Answer:
1.
109.6 cm , - 1.74 , real
2.
1.5
Explanation:
1.
d₀ = object distance = 63 cm
f = focal length of the lens = 40 cm
d = image distance = ?
using the lens equation


d = 109.6 cm
magnification is given as


m = - 1.74
The image is real
2
d₀ = object distance = a
d = image distance = - (a + 5)
f = focal length of lens = 30 cm
using the lens equation


a = 10
magnification is given as



m = 1.5