Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Nuclear fusion in the core tries to blow the star apart. Gravity holds it together. Whoever designed that system really knew what he was doing. I'm kinda grateful to him.
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?
568=12.5*9.81*h
Solve for h
You will get 4.63m
The correct answer (sample response) is:
The image seems to be behind the mirror, but nothing is really there.
Include the following in your response:
The image appears to be behind the mirror.
If someone looks behind the mirror, there is no image there.

Answer:
37.42 m/s
Explanation:
We know that apparent frequency,
is given by
where f is the given frequency in this case 392, V is the speed of sound in air which is given as 343 and
is the speed of car which is unknown, \bar f is given as 440 Hz
