Similarities:
-- All three classes have a fulcrum (pivot).
-- All three classes have a point where the effort force is applied.
-- All three classes have a point where the load or resistance force is applied.
-- If you can find a place to stand and a lever that's long enough,
then you can move the Earth with a 1st or 2nd Class lever.
Differences:
-- The mechanical advantage of a 1st Class lever
can be greater than 1, equal to 1, or less than 1.
-- The mechanical advantage of a 2nd Class lever is always more than 1 .
-- The mechanical advantage of a 3rd Class lever is always less than 1 .
Mg = 6.2 x 9.81 = 60.822
This is also normal force.
Coefficient of friction times normal force is the force due to friction:
60.822 x 0.24 = 14.6N
F = MA so F(your force) - F(friction) = 6.2 x 0.5
= 3.1
Your answer is 3.1+ 14.6
I hope this is correct though I might be wrong.
The forces of gravity between two objects are inversely proportional to
the square of the distance between them. So reducing the distance
by 1/2 means increasing the gravitational force by 2² = 4 times.
The 1 million newtons becomes 4 million newtons.
Note that this does NOT mean the satellite's altitude above the surface.
When you're calculating gravitational forces, it's the distance between
the centers of the objects. So the question is a meaningful exercise
only if we use the distance between the satellite and the planet's center.
Answer:
Sample answer: The mass of the car and the speed of the car (determined by the height of the hill) determine whether the car will break the egg.
Answer:
A. chemical substance whose atoms all have the same number of protons
Explanation:
An element is a substance which contains identical atoms that have the same number of protons in the nucleus.
Elements are arranged in the periodic table according to their atomic number (= number of protons): so atoms of different elements have a different number of protons in their nuclei.
For a neutral atom, the number of electrons around the nucleus is also equal to the number of protons.
Moreover, atoms of the same element can have a different number of neutrons, despite having the same number of protons - these atoms are called isotopes.