True. Their immune system weakens and they stay sick until they die.
The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323
Answer:
The independent variable goes on X-axis.
Option: B
<u>Explanation:
</u>
There are two variables in an experiment that are 'independent variable' and 'dependent variable', <em>the 'independent variable' is on 'X-axis' and 'dependent variable' is on 'Y-axis'</em>. <em>The 'independent variable' is the variable which is not depends on the 'dependent variable'</em>. From study we can see that <em>we cannot control the variable is called independent variable</em>.
Let us consider a two variables time and velocity,<em> where time goes on X-axis and velocity goes on Y-axis. It says that time is not a controllable variable but velocity is a controllable variable, thus time goes on X-axis which is the independent variable.
</em>
Answer:
T = 4200N
Explanation:
When the submersible craft is at rest, the tension in the cable is 6000N.
With this information you can calculate the weight of the craft by summing the forces (the summation of the force is zero because the craft is at rest):

When the craft is going down with a constant speed, there is a drag force of 1800N. Then, by using the second Newton law you have:
(1)
Fd: drag force
The summation of the forces is zero because the craft moves with constant velocity, that is, there is no acceleration.
You calculate the new tension on the cable by solving the equation (1) for T:

hence, the tension is 4200N
Answer:
Explanation:
mass of object, m = 3 kg
spring constant, K = 750 n/m
compression, x = 8 cm = 0.08 m
angle of gun, θ = 30°
(a) As the ball is launched, it has some velocity due to the compression in the spring, so it has some kinetic energy.
(b) Let v be th evelocity of ball at the tim eof launch.
by using the conservation of energy
1/2 Kx² = 1/2 mv²
750 x 0.08 x 0.08 = 3 x v²
v = 1.265 m/s
By use of the formula of maximum height


h = 0.02 m
h = 2 cm