a = ( V2 - V1)/( t2 - t1)
3.2 = ( 23.5m/s - 15.2m/s)/(t - 0)
3.2m/s = 8.3/t
t(3.2) = 8.3
t = 8.3/3.2
t = 2.59 seconds
Answer 41.7 years old
I answer this question already and it was correct!
Answer:
(A) V = 9.89m/s
(B) U = -2.50m/s
(C) ΔK.E = –377047J
(D) ΔK.E = –257750J
Explanation:
The full solution can be found in the attachment below. The east has been chosen as the direction for positivity.
This problem involves the principle of momentum conservation. This principle states that the total momentum before collision is equal to the total momentum after collision. This problem is an inelastic kind of collision for which the momentum is conserved but the kinetic energy is not. The kinetic energy after collision is always lesser than that before collision. The balance is converted into heat by friction, and also sound energy.
See attachment below for full solution.
Answer:
3.25 seconds
Explanation:
It is given that,
A person throws a baseball from height of 7 feet with an initial vertical velocity of 50 feet per second. The equation for his motion is as follows :

Where
s is the height in feet
For the given condition, the equation becomes:

When it hits the ground, h = 0
i.e.

It is a quadratic equation, we find the value of t,
t = 3.25 seconds and t = -0.134 s
Neglecting negative value
Hence, for 3.25 seconds the baseball is in the air before it hits the ground.
D. Genetic variation increases the likelihood of an allele being present that is best suited for the environment.