The bear is white in color because it is a polar bear.
<h3>What are the color of bears?</h3>
Bears are very large carnivorous animals found around the cold regions of the Arctic or North Pole.
The color of bears, may be brown, black or white depending on how far North the bears are found.
Bears found close to the Arctic or North pole are white polar bears.
Based on the description of the house, every side of the home faces South meaning that the individual lives in the North pole.
Therefore, the color of the bear will be white.
in conclusion, polar bears are white in color.
Learn more about polar bears at: brainly.com/question/21618662
#SPJ1
Answer:
The acceleration of the ball is 666.67 m/s²
Explanation:
It is given that,
Mass of the baseball, m = 0.15 kg
Applied force to it, F = 100 N
We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :
F = ma



So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.
Answer:
The dog has more momentum than the pony.
Explanation:
To solve this problem, we must remember the formula for calculating momentum, which is given below:
momentum = p = m*v
where m represents the mass of the object and v represents the velocity of the object
Using this knowledge, let's calculate the momentum for the dog and the pony.
Dog: p = m*v = (2kg)*(41 m/s) = 82 kg*m/s
Pony: p = m*v = (75kg)*(1 m/s) = 75 kg*m/s
Since 82 > 75, we can conclude that the dog has more momentum.
Hope this helps!
Answer:
The angle of diffraction are 67.75 deg and 53.57 deg.
Explanation:
Given:
Davisson and Germer experiment with nickel target for electrons bombarding.
Voltages :
and
We have to find the angles that is
and
.
Concept:
- Davison Germer experiment is based on de Broglie hypothesis where it says matter has both wave and particle nature.
- When electrons get reflected from the surface of a metal target with an atomic spacing of
, they form diffraction patterns. - The positions of diffraction maxima are given by
. - An atomic spacing is
, when the principal maximum corresponds to n=1 - The wavelength is
, and
.
Solution:
Finding the wavelength at
.
⇒ 
⇒
nm
Plugging the values of wavelength.
⇒
⇒
⇒
degrees.
Now
For for the electrons with energy
,
the wavelength is.
⇒
nm
And
⇒
degrees.
So,
The angles of diffraction maxima are 67.75 deg and 53.57 deg.