Answer:
A. 200 J
Explanation:
The initial kinetic energy depends on the initial speed, while the gravitational potential energy depends on the height, both balls are thrown with the same initial speed and from the same height. Therefore, due to the law of conservation of energy, the balls must have the same mechanical energy (the sum of both energies) when both impact the ground. Since the potential energy is zero at this point, its final kinetic energy must also be the same.
Answer:
2.64 m/s
Explanation:
Given that a 600 kilogram great "yellow" shark swimming to the right at a speed of 3 meters traveled each second as it tries to get lunch. An unsuspecting 100 kilogram blue fin tuna is minding its own business swimming to the left at a speed of 0.5 meters traveled each second. GULP! After the great "yellow" shark "collides" with the blue fin tuna
Momentum = MV
Momentum of the yellow shark before collision = 600 × 3 = 1800 kgm/s
Momentum of the tun final before collision = 100 × 0.5 = 50 kgm/s
Total momentum before collision = 1800 + 50 = 1850 kgm/s
Let's assume that they move together after collision. Then,
1850 = ( 600 + 100 ) V
1850 = 700V
V = 1850 / 700
V = 2.64285 m/s
Therefore, the momentum of the shark after collision is 2.64 m/ s approximately
Answer:
diffraction
Explanation:
diffraction occurs when light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4