Answer:
Vr = 3.24m/s
The boat is going 3.24m/s relative to the bank of the river.
Explanation:
The relative speed of the boat to the bank Vr is the resultant of speed of boat relative to the water Vb and the speed of boat as a result of the water current or wind Vw
Vr = √(Vb^2 + Vw^2) .....1
Given;
Vb = 2.6m/s
Vw = distance downstream/time = 690m/355s
Vw = 1.94m/s
From equation 1 above; substituting the values
Vr = √(2.6^2 + 1.94^2)
Vr = 3.24m/s
The boat is going 3.24m/s relative to the bank of the river.
The both have the unit (J) for Jules
Answer:
3.83 m/s
Explanation:
Given that,
Distance covered by Jan, d = 4 miles
1 mile = 1609.34 m
4 miles = 6437.38 m
Time, t = 28 minutes = 1680 s
Jan's average speed,
v = d/t

Hence, the average velocity of Jan is 3.83 m/s.
Answer:-683 cal
Explanation:
Given
Heat released by system Q=-255 cal
as heat released is taken as negative and vice-versa
Work done by system W=428 cal
From First law of thermodynamics
=change in internal Energy

Answer:
Velocity
Explanation:
We finds that the winds are coming from the west at 15 miles per hour. This information shows the velocity of the wind. Since, velocity is a vector quantity. It has both magnitude and direction. 15 miles per hour shows the speed of wind and west shows the direction of wind motion.
Hence, the given information describes wind velocity.