1.A
2. C
3. Not Sure
4. Not Sure
5. Biometrics can help to identify
who's at risk for injuries and when
they're able to safely return, and
they can gauge athlete readiness to
determine when they'll be
performing at an optimal level.
At the bottom of the tank :
P = ρgH
P = (1000 kg/m³)(10 m/s²)(1 m)
P = 10000 N/m²
F = P • A
F = (10000 N/m²)(1 m²)
F = 10000 N
At the side of the tank :
Pav = ½ρgH
Pav = ½(1000 kg/m³)(10 m/s²)(1 m)
Pav = 5000 N/m²
F = P • A
F = (5000 N/m²)(1 m²)
F = 5000 N
Answer:
The magnetic field strength inside the solenoid is .
Explanation:
Given that,
Radius = 2.0 mm
Length = 5.0 cm
Current = 2.0 A
Number of turns = 100
(a). We need to calculate the magnetic field strength inside the solenoid
Using formula of the magnetic field strength
Using Ampere's Law
Where, N = Number of turns
I = current
l = length
Put the value into the formula
(b). We draw the diagram
Hence, The magnetic field strength inside the solenoid is .
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg