I wanna say its A . I could be wrong but im almost 100 percent sure that its A wood
The temperature at which the sample of liquid turns to gas at 135 °C is termed as boiling point.
Answer: Option A
<u>Explanation:
</u>
The observation of conversion of liquid to gas indicates that there is occurrence of change in the state of matter. The inter-conversion from one state to another can be done by either varying the temperature or by varying the pressure.
In this case, the liquid on heating gets converted to gaseous state after attaining a particular temperature say 135 °C. So, this process of conversion from liquid to gaseous state on heating is termed as boiling.
The temperature at which a liquid converts to gas is termed as the boiling point of that liquid.
Answer:
0.11 kg
Explanation:
Ft = MV
Ft = momentum 5.22kg m/s
M = mass
V = velocity 48.3m/s
Therefore
5.22 = M x 48.3
Divide both sides by 48.3
5.22/48.3 = M x 48.3/48.3
0.11 = M
M = 0.11kg
Answer:
F = 63N
Explanation:
M= 1.5kg , t= 2s, r = (2t + 10)m and
Θ = (1.5t² - 6t).
magnitude of the resultant force acting on 1.5kg = ?
Force acting on the mass =
∑Fr =MAr
Fr = m(∇r² - rθ²) ..........equation (i)
∑Fθ = MAθ = M(d²θ/dr + 2dθ/dr) ......... equation (ii)
The horizontal path is defined as
r = (2t + 10)
dr/dt = 2, d²r/dt² = 0
Angle Θ is defined by
θ = (1.5t² - 6t)
dθ/dt = 3t, d²θ/dt² = 3
at t = 2
r = (2t + 10) = (2*(2) +10) = 14
but dr/dt = 2m/s and d²r/dt² = 0m/s
θ = (1.5(2)² - 6(2) ) = -6rads
dθ/dt =3(2) - 6 = 0rads
d²θ/dt = 3rad/s²
substituting equation i into equation ii,
Fr = M(d²r/dt² + rdθ/dt) = 1.5 (0-0)
∑F = m[rd²θ/dt² + 2dr/dt * dθ/dt]
∑F = 1.5(14*3+0) = 63N
F = √(Fr² +FΘ²) = √(0² + 63²) = 63N