Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N
Thermal conductivity is the ability of a material to conduct heat.
hope this helped:)
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T


Answer:
4s
Explanation:
when a bOdy rises into the air,the time it takes to reach a particular height is the same as the time it will take the body to fall from that height to the ground.
Answer:
0.800 m/s²
Explanation:
First, calculate the angular acceleration:
ω = αt + ω₀
6.00 rad/s = α (3.00 s) + 0 rad/s
α = 2.00 rad/s²
Now calculate the angular velocity at t = 2.00 s:
ω = αt + ω₀
ω = (2.00 rad/s²) (2.00 s) + 0 rad/s
ω = 4.00 rad/s
Calculate the linear velocity:
v = ωr
v = (4.00 rad/s) (0.0500 m)
v = 0.200 m/s
Finally, calculate the centripetal acceleration:
a = v² / r
a = (0.200 m/s)² / (0.0500 m)
a = 0.800 m/s²