Answer:
1070 Hz
Explanation:
First, I should point out there might be a typo in the question or the question has inconsistent values. If the tube is 40 cm long, standing waves cannot be produced at 42.5 cm and 58.5 cm lengths. I assume the length is more than the value in the question then. Under this assumption, we proceed as below:
The insert in the tube creates a closed pipe with one end open and the other closed. For a closed pipe, the difference between successive resonances is a half wavelength
.
Hence, we have

.
The speed of a wave is the product of its wavelength and its frequency.



Answer:
mass of the object is 2.18 kg
Explanation:
Given
Force (F) = 8.5 N = 8.5 kg.m/
acceleration (a) = 3.9 m/
Mass (m) = ?
We know that the newton's second law of motion gives the relation between mass of ab object. force acted upon and the amount the object is accelerated. It is expressed in the form of an equation:
F = ma
mass, m = F/a
= 
= 2.18 kg
The magnitude of that other charge will be 9×10⁻⁵ C. The force on the charge is inverse of the distance.
<h3>What is Columb's law?</h3>
The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
The magnitude of that other charge is found as;

Hence, the magnitude of that other charge will be 9×10⁻⁵ C.
To learn more about Columb's law, refer to the link;
brainly.com/question/1616890
#SPJ1
For the answer to the question above, each horse's force forms a right angle triangle with the barge and subtends an angle of 60/2 = 30°. The resultant in the direction of the barge's motion is:
Fx = Fcos(∅)
We can multiply this by 2 to find the resultant of both horses.
Fx = 2Fcos(∅)
Fx = 2 x 720cos(30)
Fx = 1247 N