The fraction of radioisotope left after 1 day is
, with the half-life expressed in days
Explanation:
The question is incomplete: however, we can still answer as follows.
The mass of a radioactive sample after a time t is given by the equation:

where:
is the mass of the radioactive sample at t = 0
is the half-life of the sample
This means that the mass of the sample halves after one half-life.
We can rewrite the equation as

And the term on the left represents the fraction of the radioisotope left after a certain time t.
Therefore, after t = 1 days, the fraction of radioisotope left in the body is

where the half-life
must be expressed in days in order to match the units.
Learn more about radioactive decay:
brainly.com/question/4207569
brainly.com/question/1695370
#LearnwithBrainly
Answer:
Explanation:
Positive values for position indicate that the object is in front of the starting point and negative values tell us that the object is behind the starting point. (time = 9.5, position = 0) the object is at the starting point.
Answer:
h >5/2r
Explanation:
This problem involves the application of the concepts of force and the work-energy theorem.
The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.
Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)
So from newton's second law of motion,
W – N = mv²/r
N = normal force = 0
W = mg
mg = ma = mv²/r
mg = mv²/r
v²= rg
v = √(rg)
The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop
So
ΔPE = ΔKE = 1/2mv²
The height at the roller coaster starts is usually higher than the top of the loop by design. So
ΔPE =mgh - mg×2r = mg(h – 2r)
2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.
In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.
So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.
ΔPE > ΔKE
mg(h–2r) > 1/2mv²
g(h–2r) > 1/2(√(rg))²
g(h–2r) > 1/2×rg
h–2r > 1/2×r
h > 2r + 1/2r
h > 5/2r
31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
The body senses whether it is upright or lying down or whether it is moving or standing still through the vestibular system, which is in the upper portion of the inner ear.