Answer:
<em>The momentum of the car is 35,000 kg.m/s</em>
Explanation:
<u>Momentum</u>
Momentum is often defined as <em>mass in motion.</em>
Since all objects have mass, if it's moving, then it has momentum. It can be calculated as the product of the mass by the velocity of the object:

If only magnitudes are considered:
p = mv
The car has a mass of m=1,000 kg and travels at v=35 m/s. Calculating its momentum:
p = 1,000 kg * 35 m/s
p = 35,000 kg.m/s
The momentum of the car is 35,000 kg.m/s
Answer:
If by 1.5 MJ you mean 1.5E6 Joules then
W = P t = power X time
W / t = P power
P = 1.5E6 J / 600 sec = 2500 J / s
P = I V
a) I = 2500 J/s / (240 J/c) = 10.4 C / sec = 10.4 amps
b) Q = I t = 10.4 C / sec * 300 sec = 3120 Coulombs
c) E = P * t = 2500 J / sec * 100 hr * 3600 sec / hr = 9.0E8 Joules
The period of the wave is the reciprocal of its frequency.
1 / (5 per second) = 0.2 second .
The wavelength is irrelevant to the period. But since you
gave it to us, we can also calculate the speed of the wave.
Wave speed = (frequency) x (wavelength)
= (5 per second) x (1cm) = 5 cm per second
According to Newton, an object will only accelerate if there is a net or unbalanced forceacting upon it. The presence of an unbalanced force will accelerate an object - changing its speed, its direction, or both its speed and direction.