Answer:
The answer is
<h2>270 m</h2>
Explanation:
To find the distance when given the velocity and time we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity of the ball = 18 m/s
time = 15 s
So the distance is
distance = 18 × 15
We have the final answer as
<h3>270 m</h3>
Hope this helps you
Answer:
I THINK it’s A
Explanation:
Because all the other answers don’t make sense.
The centripetal acceleration is given by

where v is the tangential speed and r the radius of the circular orbit.
For the car in this problem,

and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
Answer:
Cost of 1000 kilowatt hour = 6000 cents
Explanation:
Given that
Electricity cost is 6 cents per kilowatt hour.
And we have to found out the cost for one megawatt hour
We know that
1 kilowatt = 1000 watt
1 megawatt = = 1000000 watt
1 megawatt = 1000 kilowatt
1 megawatt hour = 1000 kilowatt hour
Given that cost of 1 kilowatt hour = 6 cents
So the cost of 1000 kilowatt hour = 6 x 1000 cents
Cost of 1000 kilowatt hour = 6000 cents
Answer: 0°
Explanation:
Step 1: Squaring the given equation and simplifying it
Let θ be the angle between a and b.
Given: a+b=c
Squaring on both sides:
... (a+b) . (a+b) = c.c
> |a|² + |b|² + 2(a.b) = |c|²
> |a|² + |b|² + 2|a| |b| cos 0 = |c|²
a.b = |a| |b| cos 0]
We are also given;
|a+|b| = |c|
Squaring above equation
> |a|² + |b|² + 2|a| |b| = |c|²
Step 2: Comparing the equations:
Comparing eq( insert: small n)(1) and (2)
We get, cos 0 = 1
> 0 = 0°
Final answer: 0°
[Reminders: every letters in here has an arrow above on it]