It depends on the circuit. Sometimes it becomes a bit weaker, sometimes it stays the same.
One of the major limitations of using the ball and stick model for DNA, is that within a single double stranded segment of DNA, one would have to use many many balls to represent atoms that are present in the sugar phosphate backbone, along with all of the main atoms that compose the nitrogenous bases of DNA, we also cannot construct or show the helical form of DNA, by using balls and sticks as well.
Answer: I think the answer C
Explanation:
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.
Answer:
Resistivity 
It depends upon cross sectional area and length of material
Explanation:
The resistance of any material is given by
, here
is the resistivity of material , l is length of material and A is cross sectional area
So resistivity 
So resistuivity of any material depends upon area of cross section and length of material
If cross sectional area will be more then resistivity will be more. And is length of the material will be more then resistivity will be less