Answer:
what should be done io protect forests
If a cruise ship is having troubles with buoyancy, then spread the weight of the ship over a greater volume.
Answer: Option D
<u>Explanation:
</u>
Buoyancy is the upward thrusting phenomenon of water acting on any object immersed partially or fully in water body. Hence, it creates the buoyant forces that is inversely proportionate to the immersing body's density. If the immersing body's density is higher than the density of the immersing medium then the body will get completely immersed in the water.
Similarly, in case of less, the buoyant forces act on the body will prevent it from complete immersion and allow it to float on water. Mostly cruise ships and other navy vessels use this phenomenon to keep on floating on surface of water.
In the present condition, the solution for buoyancy problem faced by a cruise ship can be solved by decreasing the density of the ship. And the ship's density can be decreased by increasing the ship's volume or by spreading the ship's weight over a greater volume.
The Law of Conservation of Energy states that, in an isolated system, energy remains constant and can not be created or destroyed, only transferred from one form to another. This law was created by Julius Robert Mayer.
Answer:

Explanation:
given,
mass of wheel(M) = 3 Kg
radius(r) = 35 cm
revolution (ω_i)= 800 rev/s
mass (m)= 1.1 Kg
I_{wheel} = Mr²
when mass attached at the edge
I' = Mr² + mr²
using conservation of angular momentum






Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!