- A 16.0 kg canoe moving to the left at 12.5 m/s makes an elastic head on collision with a 14.0 kg raft moving to the right at 16.0 m/s.
- After the collision the raft moves to the left at 14.4 m/s assuming water simulates a frictionless surface.
- Mass of the canoe (m1) = 16 Kg
- Mass of the raft (m2) = 14 Kg
- Initial velocity of the canoe (u1) = 12.5 m/s
- Initial velocity of the raft (u1) = - 16 m/s [Here, the raft's velocity is negative, because the objects are moving in the opposite direction]
- Total momentum of the system = m1u1 + m2u2 = [(16 × 12.5) + (14 × -16)] Kg m/s = (200 - 224) Kg m/s = -24 Kg m/s
- Final velocity of the raft (v2) = 14.4 m/s
- Let the final velocity of the canoe be v1.
- Total momentum of the system after the impact = m1v1 + m2v2 = [(16 × v1) + (14 × 14.4)] Kg m/s = 16v1 Kg + 201.6 Kg m/s
- According to the law of conservation of momentum, Total momentum of the system before the impact = Total momentum of the system after the impact
- or, -24 Kg m/s = 16v1 Kg + 201.6 Kg m/s
- or, -24 Kg m/s - 201.6 Kg m/s = 16v1 Kg
- or, -225.6 Kg m/s = 16v1 Kg
- or, v1 = -225.6 Kg m/s ÷ 16 Kg
- or, v1 = -14.1 m/s
<u>Answer:</u>
<u>T</u><u>he final velocity of the </u><u>canoe </u><u>is </u><u>-</u><u>1</u><u>4</u><u>.</u><u>1</u><u> </u><u>m/</u><u>s </u><u>or </u><u>1</u><u>4</u><u>.</u><u>1</u><u> </u><u>m/</u><u>s </u><u>to </u><u>the </u><u>right.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M /
²
And Newton's second law
W = m g
W = F
G m M /
² = mg
g = G M /
²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
Answer:
Explanation:
= 4190 J/kg.K
= 910 J/Kg. K
= 1.50 kg
= 1.80 kg

ΔT +
ΔT
= (1.50)(910)(85.0-20)+(1.80)(4190)(85.0-20)
= 578,955 J
= 579 kJ