1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
6

Convert gravitational potential energy to kinetic energy.

Physics
1 answer:
Digiron [165]3 years ago
4 0

Answer:

1.7 J

Explanation:

The energy carried by a single photon is given by

E=hf

where h is the Planck's constant and f is the frequency of the photon.

The photon of our exercise has a frequency of f=1.7 \cdot 10^{17} Hz, therefore its energy is

E=hf=(6.63 \cdot 10^{-34}Js)(1.7 \cdot 10^{17} Hz)=1.1 \cdot 10^{-16} J

You might be interested in
A 1-meter-long wire consists of an inner copper core with a radius of 1.0 mm and an outer aluminum sheathe, which is 1.0 mm thic
Mazyrski [523]

Answer:

The total resistance of the wire is = 1.917\times10^{-3}

Explanation:

Since the wires will both be in contact with the voltage source at the same time and the current flows along in their length-wise direction, the two wires will be considered to be in parallel.

Hence, for resistances in parallel, the total resistance, R_{Total}

\frac{1}{R_{Total}}  =\frac{1}{R_{cu}  }+\frac{1}{R_{al}}

Parameters given:

Length of wire = 1 m

Cross sectional area of copper A_{cu}= \pi r^{2}= \pi \times (1\times 10^{-3}  )^{2} =3.142\times10^{-6} m^{2}

Cross sectional area of aluminium wire  

A_{al}= \pi( R^{2}-r^{2})\\\\ = \pi \times [ (2\times 10^{-3}  )^{2}-(1\times 10^{-3}  )^{2}] =9.42\times10^{-6} m^{2}\\

Resistivity of copper \rho _{cu}=1.7\times 10^{-8}  \Omega .m

Resistivity of Aluminium \rho _{al}=2.8\times 10^{-8}  \Omega .m

Resistance of copper R_{cu}= \frac{\rho_{cu} \times l}{A_{cu} }  =\frac{1.7\times 10^{-8} \times 1}{3.142\times10^{-6} } =5.41\times 10^{-3}\Omega

Resistance of aluminium R_{al}= \frac{\rho_{al} \times l}{A_{al} }  =\frac{2.8\times 10^{-8} \times 1}{9.42\times10^{-6} } =2.97\times 10^{-3}\Omega

The total resistance of the wire can be obtained as follows;

\frac{1}{R_{Total}}  =\frac{1}{5.41\times10^{-3}  }+\frac{1}{2.97\times10^{-3}}=521.52\frac{1}{\Omega}

R_{Total}= 1.917\times 10^{-3}\Omega

∴ The total resistance of the wire = 1.917\times 10^{-3}\Omega

4 0
3 years ago
Read 2 more answers
Use the accompanying seismogram to answer which of the three types of seismic waves reached the seismograph first.
UkoKoshka [18]

Answer:

Primary waves (P-waves)

Explanation:

Due to excess of the energy inside the earth when the tectonic plates begin to slide or fracture then the energy is released in the form of seismic waves, this causes the earthquake.

<u>Two types of seismic waves are generally responsible for the earth quakes:</u>

  1. body waves
  2. surface waves

Body waves are of two types:

Primary waves (P-waves)

These are the fastest of all the waves involved in the earth-quake which travel at a speed of 1.6 km to 8 km per second.

They can pass trough solids, liquids and gases. They arrive at the surface as an instant thud.

Secondary waves (S-waves)

They can only pass through the solids and they move slower than the P-waves.

As S-waves move, they displace the rock particles, pushing them outwards perpendicular to the wave-path that leads to the earthquake-related first rolling period.

Surface waves (L-waves/ long waves)

  • These waves move along the surface of the earth. They are responsible for the earthquake's carnage.
  • They move up and down the Earth's surface, rocking the foundations of man-made structures.
  • Surface waves are slowest of the three waves, which means that they are the last to arrive. So at the end of an earthquake usually comes the most powerful shaking.
6 0
3 years ago
Find the velocity in m/s of a swimmer who swims 110m toward the shore in 72 s
Sladkaya [172]
1.5 m/s toward shore 

8 0
3 years ago
Help with these three
Elenna [48]
The first: alright, first: you draw the person in the elevator, then draw a red arrow, pointing downwards, beginning from his center of mass. This arrow is representing the gravitational force, Fg.
You can always calculate this right away, if you know his mass, by multiplying his weight in kg by the gravitational constant
g = 9.81 \frac{m}{s {}^{2} }
let's do it for this case:
f_{g}  = m \times g \\ f _{g}  = 65kg \times 9.81 \frac{m}{s {}^{2} }  = 637.65
the unit of your fg will be in Newton [N]
so, first step solved, Fg is 637.65N
Fg is a field force by the way, and at the same time, the elevator is pushing up on him with 637.65N, so you draw another arrow pointing upwards, ending at the tip of the downwards arrow.
now let's calculate the force of the elevator
f = m \times a \\ f = 65 \times 5 \frac{m}{s {}^{2} }  \\ f = 325n
so you draw another arrow which is pointing downwards on him, because the elevator is accelating him upwards, making him heavier
the elevator force in this case is a contact force, because it only comes to existence while the two are touching, while Fg is the same everywhere
8 0
3 years ago
A long uniformly charged thread (linear charge density λ= 2.5 C/m) lies along the x axis in the figure.(Figure 1) A small charge
Kamila [148]

Answer 1) The electric field at distance r from the thread is radial and has magnitude  

E = λ / (2 π ε° r)  

The electric field from the point charge usually is observed to follow coulomb's law:  

E = Q / (4  π ε° r^{2})  

Now, adding the two field vectors:  

E_{thread}  =  {2.5 / (22 π ε° X 0.07 ) ; 0}  

Answer 2) E_{q}  = {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))

Adding these two vectors will give the length which is magnitude of the combined field.  

The y-component / x-component gives the tangent of the angle with the positive x-axes.

Please refer the graph and the attachment for better understanding.

5 0
3 years ago
Other questions:
  • Two dimensional motion is motion in :
    5·1 answer
  • Why degree F is best to measure accurate temperature<br>​
    10·1 answer
  • I need to know what this means
    7·1 answer
  • Which type of thermal energy transfer warms your hand when you hold it near a glass of hot water?
    7·1 answer
  • The average kinetic energy of particles of matter is called
    14·1 answer
  • When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as mu
    15·1 answer
  • pectrum Inc., an automobile manufacturer, is interested in measuring the customer satisfaction of car owners. It decides to coll
    10·1 answer
  • A force Ě = F, î + Fy h acts on a particle
    11·1 answer
  • Which statement best describes why the Milky Way is shaped a certain way?
    5·1 answer
  • How To achieve the largest resistance ?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!