B: asking questions
(Hope this helps)
Answer:
The maximum velocity the mass can have if the string is not to break = 29.05 m/s
Explanation:
The force balance in the mass:
The tension in the string must always be equal to the force keeping the mass in horizontal circular motion.
The force keeping the mass in circular motion is given by
F = mv²/r
m = mass of body = 0.4 kg
v = speed of the body in circular motion
r = radius of the circular motion = 0.75 m
Maximum tension the string can withstand will correspond to the maximum velocity of the body in horizontal circular motion
T = F = mv²/r
450 = (0.4)(v²)/(0.75)
v² = 450×0.75/0.4 = 843.75
v = 29.05 m/s
The resistance of the sample is 
Explanation:
The relationship between resistance of a material and temperature is given by the equation

where
is the resistance at the temperature 
is the temperature coefficient of resistance
For the sample of nickel in this problem, we have:
when the temperature is 
While the temperature coefficient of resistance of nickel is

Therefore, the resistance of the sample when its temperature is

is

Learn more about resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer:
True
Explanation:
Magnetic field lines outside of a permanent magnet always run from the north magnetic pole to the south magnetic pole. Therefore, the magnetic field lines of the earth run from the southern geographic hemisphere towards the northern geographic hemisphere.