Forehead, Feet and Elbows, if the person is perfect health condition.
Answer:
[ 2.67 , 1 ] m
Explanation:
Given:-
- The side lengths of the rods are as follows:
a = 4 m , b = 4 m , c = 5 m
a = Base , b = Perpendicular , c = Hypotenuse
- All rods are made of same material with uniform density. With
Find:-
Find the coordinates of the center of mass of the triangle.
Solution:-
- The center of mass of any triangle is at the intersection of its medians.
- So let’s say we have a triangle with vertices at points (0,0) , (a,0) , and (0,b).
- Median from (0,0) to midpoint (a/2,b/2) of opposite side has equation:
bx−ay=0
- Median from (a,0) to midpoint (0,b/2) of opposite side has equation:
bx+2ay=ab
- Median from (0,b) to midpoint (a/2,0) of opposite side has equation:
2bx+ay=ab
- Solve all three equations simultaneously:
bx−ay=0 , bx = ay
ay + 2ay = ab , 3ay = ab , y = b/3
bx = b/3
x = a / 3
- So the distance from the median to each leg of the triangle is 1/3 length of other leg.
- So the coordinates of the centroid for right angle triangle would be:
[ 2a/3 , b/3 ]
[ 2.67 , 1 ] m
The force exerted by a pressure of any gas over a surface its given by the formula P=F/S (where P is pressure, F force and S surface).
We can multiply both sides of the formula by S to obtain the force.
P*S=(F*S)/S
P*S=F
Solve for P=1.80*10^5 Pa and S=4.10*10^-4 m^2 ([Pa] =[N/m^s])
(1.80*10^5 N/m^s) * (4.10*10^-4 m^2) =F
73.8 N =F
The gravitational force would get stronger because the farther the two masses are separated the more gravitational force will be used to pull them together the closer they are the less gravitational pull is used to pull them together