As both the skater pushed each other with a force, skater 1 will acquire greater velocity than skater 2 with heavier mass.
Answer: Option C
<u>Explanation:</u>
Here we can understand the scenario with the example of a particle collision. When two particles of different masses, one being lighter and the other being heavier, there will be a movement and change in velocities.
Now, when these two particle collide with each other, there will be an equal and opposite thrust or reaction on both the particles. The particle with heavier mass will not be able to acquire more velocity because of its weight whereas the lighter particle will be pushed far away, being less in mass.
We can also say that the heavier particle will exert more force as compared to the lighter one and hence, can easily push it far away. this is all because the force is directly proportional to the mass of the object.
Hence, just like the particle, when two skater try to push each other with a significant amount of force, skater 2 will win to exert more force and therefore, skater 1 will acquire greater velocity as compared to skater 2.
<h2>
Answer:</h2>
<em><u>Velocity of throwing arrow = 43.13 m/s.</u></em>
<h2>
Explanation:</h2>
In the question,
Let us say the height from which the arrow was shot = h
Distance traveled by the arrow in horizontal = 61 m
Angle made by the arrow with the ground = 2°
So,
From the <u>equations of the motion</u>,

Now,
Also,
Finally, the angle made is 2 degrees with the horizontal.
So,
Final horizontal velocity = v.cos20°
Final vertical velocity = v.sin20°
Now,
u = v.cos20° (No acceleration in horizontal)
Also,

So,
We can say that,

<em><u>Therefore, the velocity with which the arrow was shot by the archer is 43.13 m/s.</u></em>
The answer is C, a peer group.
Answer:
The corridor's distance is "90 m".
Explanation:
- She heads in the east directions but creates the first pause, meaning she crosses the distance 'x' in step 1.
- Now, provided that perhaps the distance by her to another fountain or waterfall just after the first stop is twice as far away she traveled.
- Because she moved the distance of 'x,' then, therefore, her distance towards the fountain of '2x.' She casually strolls and once again pauses 60 m beyond her stop.
- The gap about her to the waterfall during that time approximately twice the distance and her to the eastern end of the hallway.
- Assume her gap from either the east end of the platform seems to be 'y' at either the second stop, after which '2y' may become the distance between the 2nd pause and the waterfall.
Now,
⇒ 
⇒ 
The total distance of the corridor will be:
= 
= 
= 
= 