Answer:
Technician A only
Explanation:
Both high-side pressures and low-side pressures are low with the engine running and the selector set to the air-conditioning position. Technician A says that the system is undercharged. Technician B says the cooling fan could be inoperative. Which technician is correct?
usually . An overcharged system will result in lower than normal low side pressures
An undercharged system will not enable the compressor to create pressure. As a result of the low amount of refrigerant, the cooling ability is reduced. When we say undercharged, we mean the refrigerant in the system is low, so the both the high side pressures and low side pressures will be low.
Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
<span>Assuming continuous operation (24/7), we can say that
Energy produced : Energy per hour * 24 (number of hours in a day) - 365 (number of days in a year.
Energy per hour: 2050 * 1.055 = 2162.75 kg.
So, we proceed to calculate the results
E: 2162.75 * 24 * 365 = 18,945,690 kj per year.
Now, we transform kj to megajoule, remembering that kilo is 10*3 and mega is 1'*6, so we divide the result by 1,000 in order to get the results in megajoules, and the answer would be:
18,945.69 megajoules can be produced per year.</span>
Answer:D
A system where matter and energy can not enter or leave the system