To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is
Here
v = Wave speed
T = Tension
= Linear mass density
From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension
Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion
The factor that the wave speed change is 2.
Kepler’s three law is the answer. Kepler’s 3 is the amount
of time it takes to orbit the sun is related to size and distance. Kepler’s 3 is one of the planetary motion and
can be stated as all planets move in elliptical orbits, having the sun sits at
one of the foci.
True, the path of the ball, as observed from the train window, will be a horizontal straight line.
An object projected from a certain height has a parabolic path when observed from a fixed point.
However, if the reference point is moving at the same velocity as the object, the path of the object's motion appears to be a straight line.
When the ball is released from the window of the train, it will move at the same constant velocity as the train, and the path of the ball's motion observed from the train window will be a straight line.
Thus, we can conclude that the given statement is true. The path of the ball, as observed from the train window, will be a horizontal straight line.
Learn more about path of motion of objects here: brainly.com/question/82610
Answer:
1703.24J
Explanation:
Given parameters:
Mass of brick = 7.9kg
Height of building = 22m
Unknown:
Potential energy of the brick = ?
Solution:
The potential energy of a body is the energy at rest of the body. Mathematically;
P.E = mgh
m is the mass of the brick
g is the acceleration due to gravity
h is the height of the building
Insert the given parameters and solve;
P.E = 7.9 x 9.8 x 22 = 1703.24J