The concentration of the hydroxide ions after 50 ml of 0.250M NaOH is added to 120ml of 0.200M Na2SO4 is 7.35 x 10^-2 M.
What is meant by concentration?
Concentration is the total amount of solute present in the given volume of solution. this is expressed in terms of molarity, molality, mole fraction, normality etc. The term concentration mostly refers to the solvents and solutes present in the solution.
Concentration of hydroxide ions can be calculated by,
M (OH^-) = V (NaOH) x M (NaOH) / V (total) = 50ml x 0.250M / 50ml + 120ml = 0.0735M = 7.35 x 10^-2 M.
where M (OH^-) = concentration of hydroxide ions, V(NaOH) = volume of NaOH, M(NaOH) = concentration of NaOH.
Therefore, the concentration of the hydroxide ions after 50 ml of 0.250M NaOH is added to 120ml of 0.200M Na2SO4 is 7.35 x 10^-2 M.
To learn more about concentration click on the given link brainly.com/question/17206790
#SPJ4
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices the answer is E
A. It is an animal cell because starch is the energy storing molecule in animal cells.
<span>B. It is an animal cell because starch is responsible for protein synthesizing in animal cells. </span>
<span>C. It is a plant cell because starch is responsible for protein synthesizing in plant cells. </span>
<span>D. It is a plant cell because starch is responsible for cell building in plant cells. </span>
<span>E. It is a plant cell because starch is the energy storing molecule in plant cells.</span>
Answer:
Explanation:
We can use the Arrhenius equation to relate the activation energy and the rate constant, k, of a given reaction:
k=Ae−Ea/RT
In this equation, R is the ideal gas constant, which has a value 8.314 J/mol/K, T is temperature on the Kelvin scale, Ea is the activation energy in joules per mole, e is the constant 2.7183, and A is a constant called the frequency factor, which is related to the frequency of collisions and the orientation of the reacting molecules.
Both postulates of the collision theory of reaction rates are accommodated in the Arrhenius equation. The frequency factor A is related to the rate at which collisions having the correct orientation occur. The exponential term,
e−Ea/RT, is related to the fraction of collisions providing adequate energy to overcome the activation barrier of the reaction.