Answer:0.1898 Pa/m
Explanation:
Given data
Diameter of Pipe
Velocity of water in pipe
We know viscosity of water is
Pressure drop is given by hagen poiseuille equation

We have asked pressure Drop per unit length i.e.

Substituting Values

=0.1898 Pa/m
The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
<h3>
Thickness of the aluminum</h3>
The thickness of the aluminum can be determined using from distance of closest approach of the particle.

where;
- Z is the atomic number of aluminium = 13
- e is charge
- r is distance of closest approach = thickness of aluminium
- k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

<h3>For 2.5 MeV protons</h3>
Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.
<h3>For 10 MeV alpha-particles</h3>
Charge of alpah particle = 2e

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
Learn more about closest distance of approach here: brainly.com/question/6426420
Answer:
f(x)=23x−2
Explanation:
still trying to figure that out
Umm the Water cycle sorry I’m trying
Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).