1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
2 years ago
13

*6–24. The beam is used to support a dead load of 400 lb>ft, a live load of 2 k>ft, and a concentrated live load of 8 k. D

etermine (a) the maximum positive vertical reaction at A, (b) the maximum positive shear just to the right of the support at A, and (c) the maximum negative moment at C. Assume A is a roller, C is fixed, and B is pinned.

Engineering
1 answer:
lisabon 2012 [21]2 years ago
3 0

Answer:

(a) maximum positive reaction at A = 64.0 k

(b) maximum positive shear at A = 32.0 k

(c) maximum negative moment at C = -540 k·ft

Explanation:

Given;

dead load  Gk = 400 lb/ft

live load Qk = 2 k/ft

concentrated live load Pk =8 k

(a) from the influence line for vertical reaction at A, the maximum positive reaction is

A_{ymax} = 2*(8) +(1/2(20 - 0)* (2))*(2 + 0.4) = 64 k

See attachment for the calculations of (b) & (c) including the influence line

You might be interested in
1. A team of students have designed a battery-powered cooler, which promises to keep beverages at a high-drinkability temperatur
Anit [1.1K]

Answer:

Minimum electrical power required = 3.784 Watts

Minimum battery size needed = 3.03 Amp-hr

Explanation:

Temperature of the beverages, T_L = 36^0 F = 275.372 K

Outside temperature, T_H = 100^0F = 310.928 K

rate of insulation, Q = 100 Btu/h

To get the minimum electrical power required, use the relation below:

\frac{T_L}{T_H - T_L} = \frac{Q}{W} \\W = \frac{Q(T_H - T_L)}{T_L}\\W = \frac{100(310.928 - 275.372)}{275.372}\\W = 12.91 Btu/h\\1 Btu/h = 0.293071 W\\W = 12.91 * 0.293071\\W_{min} = 3.784 Watt

V = 5 V

Power = IV

W_{min} = I_{min} V\\3.784 = 5I_{min}\\I_{min} = \frac{3.784}{5} \\I_{min} = 0.7568 A

If the cooler is supposed to work for 4 hours, t = 4 hours

I_{min} = 0.7568 * 4\\I_{min} = 3.03 Amp-hr

Minimum battery size needed = 3.03 Amp-hr

6 0
2 years ago
What could be used as another word for electrical potential?
Marat540 [252]

Answer: C. Voltage

Explanation:

Here are some other words as well.

potential, voltage, potential drop, potential difference.

Answered by the ONE & ONLY #QUEEN aka #DRIPPQUEENMO!!!

HOPE THIS HELPED!!!

6 0
2 years ago
A simple formula to estimate the upward velocity of a rocket (neglecting the aerodynamic drag) is:
Bingel [31]

Answer:

Test code:

>>u=10;

>>g=9.8;

>>q=100;

>>m0=100;

>>vstar=10;

>>tstar=fzero_rocket_example(u, g, q, m0, vstar)

Explanation:

See attached image

5 0
3 years ago
List 6 different mechanisms in the Rube Goldberg cartoon and predict the purpose of each. Does the mechanism change speed, force
vodka [1.7K]

Answer: Rotary - because it has to

Around in a circle

Explanation:

i hope this helped u

7 0
2 years ago
Thermal energy storage systems commonly involve a packed bed of solid spheres, through which a hot gas flows if the system is be
hammer [34]

Answer:

A) i) 984.32 sec

ii) 272.497° C

B) It has an advantage

C) attached below

Explanation:

Given data :

P = 2700 Kg/m^3

c = 950 J/kg*k

k = 240 W/m*K

Temp at which gas enters the storage unit  = 300° C

Ti ( initial temp of sphere ) = 25°C

convection heat transfer coefficient ( h ) = 75 W/m^2*k

<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

First step determine the Biot Number

characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125

Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3

Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method

attached below is a detailed solution of the given problem

<u>B) The physical properties are copper</u>

Pcu = 8900kg/m^3)

Cp.cu = 380 J/kg.k

It has an advantage over Aluminum

C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>

Given that:

P = 2200 Kg/m^3

c = 840 J/kg*k

k = 1.4 W/m*K

3 0
3 years ago
Other questions:
  • What is a p-n junction? Show by the diagram.
    6·1 answer
  • Two hemispherical shells of inner diameter 1m are joined together with 12 equally spaced bolts. If the interior pressure is rais
    15·1 answer
  • What is the function of a regulator?
    8·1 answer
  • A 25 lb sacrificial Mg anode is attached to the steel hull of a container ship. If the anode completely corrodes within 3 months
    10·1 answer
  • Why is tubing sometimes coiled when installed in a car or vechile
    13·1 answer
  • Cual es la definición de la distribución de las instalaciones?
    13·2 answers
  • The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c
    9·1 answer
  • Question 8(Multiple Choice Worth 2 points)
    6·1 answer
  • A parallel circuit has a resistance of 280 and an inductive reactance of 360 02. What's this circuit's impedance?
    6·1 answer
  • What is a voltage divider circuit and how do you calculate the voltage across one element in a series
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!