Answer:
94.325 g
Explanation:
We'll begin by converting 350 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
350 mL = 350 mL × 1 L /1000 mL
350 mL = 0.35 L
Next, we shall determine the number of mole of KC₂H₃O₂ in the solution. This can be obtained as follow:
Volume = 0.35 L
Molarity of KC₂H₃O₂ = 2.75 M
Mole of KC₂H₃O₂ =?
Molarity = mole /Volume
2.75 = Mole of KC₂H₃O₂ / 0.35
Cross multiply
Mole of KC₂H₃O₂ = 2.75 × 0.35
Mole of KC₂H₃O₂ = 0.9625 mole
Finally, we shall determine the mass of KC₂H₃O₂ needed to prepare the solution. This can be obtained as illustrated below:
Mole of KC₂H₃O₂ = 0.9625 mole
Molar mass of KC₂H₃O₂ = 39 + (12×2) +(3×1) + (16×2)
= 39 + 24 + 3 + 32
= 98 g/mol
Mass of KC₂H₃O₂ =?
Mass = mole × molar mass
Mass of KC₂H₃O₂ = 0.9625 × 98
Mass of KC₂H₃O₂ = 94.325 g
Thus, the mass of KC₂H₃O₂ needed to prepare the solution is 94.325 g
Answer:
2.103 J/C
Explanation:
Quantity of heat = Heat Capacity * Temperature change
Heat Capacity = Quantity of heat / Temperature Change
Heat Capacity = 61/29
Heat Capacity = 2.103 J/C
The substance is followed by H2O
Answer:
4Fe + 3O₂ → 2Fe₂O₃
Explanation:
Fe → ²⁺
O → ²⁻
But Iron III is Fe³⁺
So we have Fe³⁺ and O²⁻, the formula for the oxide must be Fe₂O₃ so the equation can be:
4Fe + 3O₂ → 2Fe₂O₃