1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
5

If the resulting trajectory of the charged particle is a circle,what is , the angular frequency of the circular motion?Express i

n terms of ,w,m and B0 .
Physics
1 answer:
Maru [420]3 years ago
8 0

Answer:

ω = B₀q/m

Explanation:

The centripetal force on the charge equal the magnetic force on the charge. (Since the trajectory is a circle). So, mrω² = B₀qv.

v = rω The speed of the charge and r = radius of path

mrω² = B₀qrω

ω = B₀q/m

The angular frequency ω = B₀q/m

You might be interested in
You walk from your bedroom, 25m to the mailbox, and then walk 25m back to your bedroom. What is your total distance? What is you
Yuki888 [10]

Answer:

Distance is 50m

Displacement is 0m

Explanation:

Distance is based on the amount of length you covered, regardless of where you end.

Displacement only considered where you started and where you ended, which is at the same spot in this case. Therefore, no displacement.

7 0
3 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
4 years ago
A ball rolls down a hill and hits a box. The momentum of the ball decreases. Which happens to the momentum? Select one of the op
Irina-Kira [14]
<span>So we want to know what happens to the momentum of the ball that rolls down hill and hits a box. So we need to use the law of conservation of momentum which states that the momentum must be conserved. It cant be transformed into inertia or mass. It can only be transferred to other object via some interactions like collisions. So it has to be a. transferred to the box and that is the correct answer. </span>
7 0
3 years ago
4. A woman releases one egg every month for 37 years. Calculate how many
BigorU [14]

so, 444 eggs would have been released in 37yrs

5 0
3 years ago
A hand lifts a block vertically upward at constant velocity. The work done by gravity on the block ____ if the system consists o
adelina 88 [10]

Answer:

If the system consists of the block only, the work done by the gravity is negative.

If the system consists of the block and the earth the work done by the gravity is zero.

Explanation:

If the system consists of the block only, then the system experiences two external forces: one exerted by the hand that lifts the block vertically upward and other exerted by the earth (gravity), which is opposed to the movement of the system, so the work done by gravity is negative.

On the other hand, if the system consists of the block and the earth, then only exists a external force which is the exerted by the hand. So, the force exerted by gravity is zero.

6 0
3 years ago
Other questions:
  • Recall Elmer Trett, who in 1994 reached a speed of 103m/s on his motorcycle. Suppose trett drives off a horizontal ramp at this
    10·1 answer
  • Please Help! Will mark Brainliest! 100 Points!
    5·2 answers
  • A frisbee is flying through the air. Which forces are acting on it (choose 3)​
    15·1 answer
  • How much do you know about genetic engineering?
    9·1 answer
  • a train travels 99 kilometers in 3 hours, and then 80 kilometers in 5 hours. What is it’s average speed?
    8·1 answer
  • The springs of a 1700-kg car compress 5.0 mm when its 66-kg driver gets into the driver seat. If the car goes over a bump, what
    6·1 answer
  • Consider a portion of a cell membrane that has a thickness of 7.50nm and 1.3 micrometers x 1.3 micrometers in area. A measuremen
    15·1 answer
  • King crimson vs DIO? for science of course. and for an essay
    15·2 answers
  • Calcular el diámetro que debe tener en el embolo mayor un gato hidráulico, para obtener una fuerza de 3500N. Cuando el embolo me
    12·1 answer
  • ¿Qué diferencia una magnitud fundamental de una derivada?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!