To solve this problem we will apply the linear motion kinematic equations. We will find the two components of velocity and finally by geometric and vector relations we will find both the angle and the magnitude of the vector. In the case of horizontal speed we have to



The vertical component of velocity is

Here,
h = Height
g = Gravitational acceleration
t = Time
= Vertical component of velocity



The direction of the velocity will be given by the tangent of the components, then



The magnitude is given vectorially as,



Therefore the angle is 55.59° and the velocity is 26.37m/s
Answer:
F = 11 N
Explanation:
Given,
Mass of a block, m = 5 kg
Acceleration of the block, a = 2.2 m/s²
We need to find the force on the person's hand. Let it is F. We know that force is given by the product of mass and acceleration as follows :
F = ma
F = 5 kg × 2.2 m/s²
F = 11 N
So, the force on a person's hand is 11 N.
Most as long the hypothesis is a good answer and can be answered
Option (a) is correct.
Falling objects accelerate as they approach the ground.This is because of the force of gravity acting on the falling objects. so the velocity of these objects increases continuously as they approach the ground. the acceleration acting on the falling objects is a constant ( close to the surface of earth) and is called as acceleration due to gravity denoted by g. value of g=9.8 m/s².
Answer:
I didn't know these questions sorry