You can accelerate by changing direction, even though you don't speed up/down. Remember that acceleration is a vector so, it has a direction and a magnitude. That's why this works! Hope it helps.
Answer:
5833.33
Explanation:
= Angular acceleration
= Number of revolutions
= Initial angular speed = 0
t = Time taken = 2 s
Final angular speed

From the equation of rotational motion we have


The number of revolutions is 5833.33
Answer:
B. Vestibular nuclei
Explanation:
The nerve information generated by the vestibular receptors travels through the vestibular portion of the eighth pair that penetrates the brain stem at the level of the brain stem bridge. At this level there are four vestibular nuclei, which receive the synapses of these axons, coming from the ridges and macules. The semicircular ducts predominantly terminate in the superior and medial nuclei. While the fibers coming from the macules end on the lateral, medial and inferior nuclei. Some fibers of the eighth pair end in the flocculonodular lobe of the cerebellum, <u>these connections play an important role in controlling posture and balance.</u>
From the vestibular nuclei, two bundles of fibers descending to the spinal cord originate from the medial and lateral vestibular spinal bundles and a bundle of fiber that rises in the brain stem that participates in the coordination of eye movements, the medial longitudinal fascicle, which participates in Rotational nystagmus This system also participates in an important way in the control of some ocular movements by the fibers that it contributes to the medial longitudinal fascicle, which is a structure that interconnects the motor nuclei of the extrinsic muscles of the eyeballs VI or abdicens nucleus (abductor) on one side and IV or pathetic nucleus (trochlear) and III or nucleus of the common ocular motor (oculomotor) on the opposite side.
The normal force of the force given is calculated through the equation,
Fn = F(sin θ)
where Fn is the normal force, F is the force, and θ is the angle.
Fn = (25 N)(sin 60°) = 21.65 N
The x-component of the force applied is,
Fx = (25 N)(cos 60°) = 12.5 N
The value of the coefficient of static friction is calculated through the equation,
F = μFn
μ = Fx / Fn = 12.5 N / 21.65 N = 0.577
Answer:
4.399 Nm
Explanation:
The maximum Torque on a coil is given as,
τ = BNIA...................... Equation 1
Where τ = Maximum torque exerted on the coil, B = Magnetic Field, N = Number of turns, I = Current, A = Area.
Given: N = 45.5 Turns, B = 0.49 T, I = 26.7 mA = 0.0267 A,
A = πr², Where r = radius of the coil, r= 4.85 cm = 0.0485 m
A = 3.14(0.0485)²
A = 7.39×10⁻³ m².
Substitute into equation 1
τ = 45.5×0.49×26.7×7.39×10⁻³
τ = 4.399 Nm