Answer:Paper and plastic!
Explanation:
Answer:
E = 10t^2e^-10t Joules
Explanation:
Given that the current through a 0.2-H inductor is i(t) = 10te–5t A.
The energy E stored in the inductor can be expressed as
E = 1/2Ll^2
Substitutes the inductor L and the current I into the formula
E = 1/2 × 0.2 × ( 10te^-5t )^2
E = 0.1 × 100t^2e^-10t
E = 10t^2e^-10t Joules
Therefore, the energy stored in the inductor is 10t^2e^-10t Joules
The answer is False
<span>Inertia is NOT the tendency to resist motion.</span>
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N