1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
5

Assume that our computer stores decimal numbers using 16 bits - 10 bits for a sign/magnitude mantissa and 6 bits for a sign/magn

itude base-2 exponent. (The way we showed in class.) Show the internal representation of the following decimal quantities.
a. +7.5
b. -20.25
c. -1/64
Physics
1 answer:
madreJ [45]3 years ago
5 0

Explanation:

a) 7.5= 111.1×2°= 0.1111×2^3

which can also be written as

(1/2+1/4+1/8+1/16)×8

sign of mantissa:=0

Mantissa(9 bits): 111100000

sign of exponent: 0

Exponent(5 bits): 0011

the final for this is:011110000000011

b) -20.25= -10100.01×2^0= -0.1010001×2^5

sign of mantissa: 1

Mantissa(9 bits): 101000100

sign of exponent: 0

Exponent(5 bits): 00101

the final for this is:1101000100000101

c)-1/64= -.000001×2^0= -0.1×2^{-5}

sign of mantissa: 1

Mantissa(9 bits): 100000000

sign of exponent: 0

Exponent(5 bits): 00101

the final for this is:1100000000100101

You might be interested in
Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.
noname [10]

Question:

The water molecules now in your body were once part of a molecular cloud. Only about onemillionth of the mass of a molecular cloud is in the form of water molecules, and the mass density of such a cloud is roughly 2.0×10−21 g/cm^3.

Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.

Answer:

The volume of cloud that has the same density as the amount of water in our body is 1.4×10²⁵ cm³

Explanation:

Here, we have mass density of cloud  =  2.0×10⁻²¹ g/cm^3

Density = Mass/Volume

Volume = Mass/Density =   If the mass is 40 kg and the body is made up of 70% by mass of water, we have

28 kg water = 28000 g

Therefore the Volume = 28 kg/ 2.0×10⁻²¹ g/cm^3 = 1.4×10¹⁹ m³ = 1.4×10²⁵ cm³.

Therefore, the volume of cloud that has the same density as the amount of water in our body = 1.4×10²⁵ cm³.

6 0
4 years ago
Why is Earth’s North Pole a geographic north pole but a south seeking pole magnetically?
natima [27]

Answer:It is actually the South Magnetic pole

Explanation:The magnetic pole near earth's geographic north pole is actually the south magnetic pole. When it comes to magnets, opposites attract. This fact means that the north end of a magnet in a compass is attracted to the south magnetic pole, which lies close to the geographic north pole.

3 0
3 years ago
A particle of mass m moves under an attractive central force F(r) = -Kr4 with angular momentum L. For what energy will the motio
docker41 [41]

Answer:

Angular velocity is same as frequency of oscillation in this case.

ω = \sqrt{\frac{7K}{m} } x [\frac{L^{2}}{mK}]^{3/14}

Explanation:

- write the equation F(r) = -Kr^{4} with angular momentum <em>L</em>

- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.

- Write the energy of the orbit in relative to r = 0, and solve for "E".

- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.

- Solve for effective potential

- ω = \sqrt{\frac{7K}{m} } x [\frac{L^{2}}{mK}]^{3/14}

3 0
3 years ago
Two sound waves have equal displacement amplitudes, but wave 1 has two-thirds the frequency of wave 2. What is the ratio of the
zlopas [31]

Answer:

\dfrac{I_1}{I_2}=\dfrac{4}{9}

Explanation:

c = Speed of wave

\rho = Density of medium

A = Area

\nu = Frequency

\nu_1=\dfrac{2}{3}\nu_2

Intensity of sound is given by

I=\dfrac{1}{2}\rho c(A\omega)^2\\\Rightarrow I=\dfrac{1}{2}\rho c(A2\pi \nu)^2

So,

I\propto \nu^2

We get

\dfrac{I_1}{I_2}=\dfrac{\nu_1^2}{\nu_2^2}\\\Rightarrow \dfrac{I_1}{I_2}=\dfrac{\dfrac{2}{3}^2\nu_2^2}{\nu_2^2}\\\Rightarrow \dfrac{I_1}{I_2}=\dfrac{4}{9}

The ratio is \dfrac{I_1}{I_2}=\dfrac{4}{9}

8 0
3 years ago
How fast would 40 Newtons of force accelerate a 2 kg object?
Digiron [165]

Answer:

20 m/s^2

Explanation:

We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

F=ma

where

F is the net force on the object

m is its mass

a is its acceleration

In this problem:

F = 40 N is the force on the object

m = 2 kg is its mass

Therefore, the acceleration of the object is

a=\frac{F}{m}=\frac{40}{2}=20 m/s^2

8 0
3 years ago
Other questions:
  • A particle starts from the origin at t = 0 with an initial velocity of 5.3 m/s along the positive x axis.If the acceleration is
    11·1 answer
  • In which situation is no work considered to be done by a force?
    10·1 answer
  • A car goes from point A to point B, five miles away and then returns to point A. The car is going 15 mph.
    14·1 answer
  • What Do You Already Know about Density? Material Design. Number each material and sort the items in order from lowest (1) to hig
    11·1 answer
  • What is the momentum of a 750kg car traculing at a velocity of 24m/s
    5·1 answer
  • A 9.0 g wad of sticky clay is hurled horizontally at a 90 g wooden block initially at rest on a horizontal surface. The clay sti
    12·1 answer
  • A 25 kg box is being pulled at a constant velocity with a tension force of 65 N. what is the coefficient of friction between the
    7·1 answer
  • Which hand is negatively charged?<br> A<br> B<br> C<br> D
    11·2 answers
  • How many sides does a square have will give brainliest
    10·2 answers
  • A softball pitcher throws a softball to a catcher behind home plate. the softball is 3 feet above the ground when it leaves the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!