Answer:
The coefficient of Z₂ is 1.
Explanation:
From the question given above:
X + ZY —> XY + Z₂
Next, we shall balance the equation to obtain the coefficient of Z₂. This can be obtained as follow:
X + ZY —> XY + Z₂
There is 1 atom of Z on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of ZY as shown below:
X + 2ZY —> XY + Z₂
There are 2 atoms of Y on the left side and 1 atom on the right side. It can be balance by putting 2 in front of XY as shown below:
X + 2ZY —> 2XY + Z₂
Now, we have 1 atom of X on the left side and 2 atoms on the right side. It can be balance by putting 2 in front of X as shown below:
2X + 2ZY —> 2XY + Z₂
Now the equation is balanced.
Thus, the coefficient of Z₂ is 1.
Radio active decay reactions follow first order rate kinetics.
a) The half life and decay constant for radio active decay reactions are related by the equation:



Where k is the decay constant
b) Finding out the decay constant for the decay of C-14 isotope:



c) Finding the age of the sample :
35 % of the radiocarbon is present currently.
The first order rate equation is,
![[A] = [A_{0}]e^{-kt}](https://tex.z-dn.net/?f=%20%5BA%5D%20%3D%20%5BA_%7B0%7D%5De%5E%7B-kt%7D%20%20%20)
![\frac{[A]}{[A_{0}]} = e^{-kt}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BA%5D%7D%7B%5BA_%7B0%7D%5D%7D%20%3D%20e%5E%7B-kt%7D%20%20)


t = 7923 years
Therefore, age of the sample is 7923 years.
Answer:
The greatest acceleration when the unbalanced force is applied will be experienced in :
A) The box with a mass of 2 kg
Explanation:
According to second law of motion the external unbalanced force is directly proportional to rate of change of momentum.
F = (Final momentum - initial momentum)/time
or
Force is equal to the product of mass and acceleration
F = m x a
Here a= acceleration
m = mass of the object
If Force is constant then acceleration is inversely proportional to mass

A) The box with a mass of 2kg
F = 8 N

a = 4 m/s2
B) The box with the mass of 4kg

a = 2 m/s2
C) The box with a mass of 6kg

a = 1.33 m/s2
D) The box with a mass of 8kg

a = 1 m/s2
B) the number of electrons