Answer:
The Young's Modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The Young's Modulus (or Elastic Modulus) is in essence the stiffness of a material. In other words, it is how easily it is bended or stretched.
Explanation:
Have a great day
Answer:
The correct option is B) Balance Sheet
Explanation:
A Balance Sheet offers a description of a company's obligations, assets, and investments as well as net income over a given span of time such as a period of 6 months or 12 months, for instance.
Also known as the Statement of Financial Position, it contains sufficient information for investors and business owners to determine the company's financial performance in that period as well as to compare the performance of that company with industry norms or competition.
Cheers
Answer:
Mechanical average of a wheel = 3
Explanation:
Given:
Radius of wheel = 1.5 ft = 1.5 x 12 = 18 inches
Radius of axle = 6 inches
Find:
Mechanical average of a wheel
Computation:
Mechanical average of a wheel = Radius of wheel / Radius of axle
Mechanical average of a wheel = 18 / 6
Mechanical average of a wheel = 3
Answer:
It will not experience fracture when it is exposed to a stress of 1030 MPa.
Explanation:
Given
Klc = 54.8 MPa √m
a = 0.5 mm = 0.5*10⁻³m
Y = 1.0
This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:
<em>σc = KIc / (Y*√(π*a))</em>
Thus
σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))
⇒ σc = 1382.67 MPa > 1030 MPa
Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.