Answer:
heat transfer for the process is - 643.3 kJ
Explanation:
given data
mass m = 2 kg
pressure p1 = 500 kPa
temperature t1 = 400°C = 673.15 K
temperature t2 = 40°C = 313.15 K
pressure p2 = 300 kPa
to find out
heat transfer for the process
solution
we know here mass is constant so
m1 = m2
so by energy equation
m ( u2 - u1 ) = Q - W
Q is heat transfer
and in process P = A+ N that is linear spring
so
W = ∫PdV
= 0.5 ( P1+P2) ( V1 - V2)
so for case 1
P1V1 = mRT
put here value
500 V1 = 2 (0.18892) (673.15)
V1 = 0.5087 m³
and
for case 2
P2V2 = nRT
300 V2 = 2 (0.18892) (313.15)
V2 = 0.3944 m³
and
here W will be
W = 0.5 ( 500 + 300 ) ( 0.3944 - 0.5087 )
W = -45.72 kJ
and
Q is here for Cv = 0.83 from ideal gas table
Q = mCv ( T2-T1 ) + W
Q = 2 × 0.83 ( 40 - 400 ) - 45.72
Q = - 643.3 kJ
heat transfer for the process is - 643.3 kJ
Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V

the network voltage phase is

the power transmitted is equal to:

the line induced voltage is

Answer: composted cow manure
Explanation:
A cow manure consists of high levels of ammonia, pathogens which can harm the plants thus cannot be used as fertilizer. The composted cow manure is a processed fertilizer which is prepared by eliminating the ammonia gas and pathogens. It is prepared by adding up the additional organic matter.
It is an excellent growing medium for the agricultural crops and garden plants as it is a nutrient rich fertilizer. It is mixed into the soil or can be used for top dressing of the agricultural field. It is a kind of organic manure.